Effect of soil properties on growth promotion of wheat by Penicillium radicum

Soil Research ◽  
2004 ◽  
Vol 42 (8) ◽  
pp. 897 ◽  
Author(s):  
S. A. Wakelin ◽  
R. A. Warren ◽  
M. H. Ryder

Penicillium radicum is a phosphate-solubilising fungus with plant growth promoting (PGP) activity. The widespread agronomic use of P. radicum as an inoculant is dependent on the accurate prediction of conditions where PGP response will occur. Therefore, the effect of soil physicochemical and biotic factors on PGP of wheat by P. radicum was investigated. In the first experiment, PGP was assayed in 10 soils with differing physicochemical properties. Each soil was tested with and without treatment with hydroxyapatite—an insoluble form of calcium phosphate used to increase the level of total inorganic P available for microbial solubilisation. Inoculation of wheat with P. radicum significantly (P < 0.05) increased plant growth in 4 of the 10 soils tested. The magnitude of the PGP response varied with soil type, and ranged from 8.5% (plant height, Avon soil) to 75% (plant weight, Mingenew soil). Most soil properties had little influence on PGP, with only low soil fertility (N and/or P) identified as a strong indicator of PGP by P. radicum. When detected, PGP was strongest in acidic soil conditions, although PGP was observed in neutral and alkaline soils. Virtually no interactions were detected between addition of hydroxyapatite to the soil and P. radicum inoculation. The second experiment tested PGP in 3 soils previously found to be non-responsive to inoculation, before and after sterilisation by γ-irradiation. Soil biological factors affected PGP by P. radicum in 2 of the 3 soils tested. In these soils, removal of biological factor(s) increased (P < 0.05 and P < 0.1) PGP by P. radicum. These experiments have shown that large and significant increases in plant growth promotion can be achieved through seed inoculation with P. radicum. However, both abiotic and biotic soil properties play a critical role in determining the success of inoculation. P. radicum-stimulated PGP occurred in infertile soils, with a stronger effect in acidic soil conditions. Furthermore, soil biological factors can have an important role in regulating PGP by P. radicum.

Author(s):  
Muhammad Naveed ◽  
Syeda Sosan Bukhari ◽  
Adnan Mustafa ◽  
Allah Ditta ◽  
Saud Alamri ◽  
...  

Nickel (Ni) bioavailable fraction in the soil is of utmost importance because of its involvement in plant growth and environmental feedbacks. High concentrations of Ni in the soil environment, especially in the root zone, may retard plant growth that ultimately results in reduced plant biomass and yield. However, endophytic microorganisms have great potential to reduce the toxicity of Ni, especially when applied together with zeolite. The present research work was conducted to evaluate the potential effects of an endophytic bacterium Caulobacter sp. MN13 in combination with zeolite on the physiology, growth, quality, and yield of sesame plant under normal and Ni stressed soil conditions through possible reduction of Ni uptake. Surface sterilized sesame seeds were sown in pots filled with artificially Ni contaminated soil amended with zeolite. Results revealed that plant agronomic attributes such as shoot root dry weight, total number of pods, and 1000-grains weight were increased by 41, 45, 54, and 65%, respectively, over control treatment, with combined application of bacteria and zeolite in Ni contaminated soil. In comparison to control, the gaseous exchange parameters (CO2 assimilation rate, transpiration rate, stomatal- sub-stomatal conductance, chlorophyll content, and vapor pressure) were significantly enhanced by co-application of bacteria and zeolite ranging from 20 to 49% under Ni stress. Moreover, the combined utilization of bacteria and zeolite considerably improved water relations of sesame plant, in terms of relative water content (RWC) and relative membrane permeability (RMP) along with improvement in biochemical components (protein, ash, crude fiber, fat), and micronutrients in normal as well as in Ni contaminated soil. Moreover, the same treatment modulated the Ni-stress in plants through improvement in antioxidant enzymes (AEs) activities along with improved Ni concentration in the soil and different plant tissues. Correlation and principal component analysis (PCA) further revealed that combined application of metal-tolerant bacterium Caulobacter sp. MN13 and zeolite is the most influential strategy in alleviating Ni-induced stress and subsequent improvement in growth, yield, and physio-biochemical attributes of sesame plant.


Author(s):  
Zhikang Wang ◽  
Ziyun Chen ◽  
Xiangxiang Fu

The inoculation of beneficial microorganisms to improve plant growth and soil properties is a promising strategy in the soil amendment. However, the effects of co-inoculation with phosphate-solubilizing bacteria (PSB) and N2-fixing bacteria (NFB) on the soil properties of typical C-deficient soil remain unclear. Based on a controlled experiment and a pot experiment, we examined the effects of PSB (M: Bacillus megaterium and F: Pseudomonas fluorescens), NFB (C: Azotobacter chroococcum and B: Azospirillum brasilence), and combined PSB and NFB treatments on C, N, P availability, and enzyme activities in sterilized soil, as well as the growth of Cyclocarya Paliurus seedlings grow in unsterilized soil. During a 60-day culture, prominent increases in soil inorganic N and available P contents were detected after bacteria additions. Three patterns were observed for different additions according to the dynamic bacterial growth. Synergistic effects between NFB and PSB were obvious, co-inoculations with NFB enhanced the accumulation of available P. However, decreases in soil available P and N were observed on the 60th day, which was induced by the decreases in bacterial quantities under C deficiency. Besides, co-inoculations with PSB and NFB resulted in greater performance in plant growth promotion. Aimed at amending soil with a C supply shortage, combined PSB and NFB treatments are more appropriate for practical fertilization at intervals of 30–45 days. The results demonstrate that co-inoculations could have synergistic interactions during culture and application, which may help with understanding the possible mechanism of soil amendment driven by microorganisms under C deficiency, thereby providing an alternative option for amending such soil.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9547
Author(s):  
Ping Kong ◽  
Chuanxue Hong

Background Burkholderia sp. SSG is a bacterial endophyte isolated from boxwood leaves showing a resistant response to infection by the boxwood blight pathogen Calonectria pseudonaviculata. SSG acted as a protective and curative biocontrol agent for boxwood blight and as a bio-sanitizer of disease inoculum in the field. Many gene clusters involved in antibiotic production and plant growth promotion (PGP) were found in the genome, giving this endophyte great application potential as a treatment for plant protection. However, the PGP features have not been documented. This study investigated the plant growth promotion activity of SSG in boxwood. Methods To determine whether SSG is a plant growth promoting bacterium, four PGP traits, auxin and siderophore production, nitrogen fixation and phosphate solubilization, were examined in the laboratory with colorimetric or agar plate assays. The plant growth promoting activity of SSG was tested on three boxwood varieties characterized by slow, intermediate and fast growth rates, namely Justin Brouwers, Buddy and Winter Gem, respectively. These plants were drenched with an SSG cell suspension or water and washed plant weight was compared before and after treatment to determine growth changes after 10 months. Results The SSG culture was sustainable on nitrogen free media, suggesting that SSG may fix atmospheric nitrogen. It was also a strong phosphate solubilizer and a potent siderophore and indole-3-acetic acid (IAA) producer. Significant growth promotion was observed on boxwood cultivars Justin Brouwers, Buddy and Winter Gem 10 months after plant roots were drenched with SSG cells. The growth rate of treated plants was 76.1, 58.3, and 37.3% higher than that of the control, respectively. The degree of growth promotion was significantly different among plant varieties, notably more pronounced with the slow and intermediate growers. This study demonstrates that the SSG bacterium has multiple PGP traits and is a prospective plant biofertilizer.


2021 ◽  
Vol 32 (1) ◽  
pp. 117-141
Author(s):  
Munirah Tharek ◽  
◽  
Dzulaikha Khairuddin ◽  
Nazalan Najimudin ◽  
Amir Hamzah Ghazali ◽  
...  

An endophytic Escherichia coli USML2 originally isolated from the inner part of an oil palm (Elaeis guineensis Jacq.) leaf tissue was inoculated to rice seedlings to investigate its ability in colonising plant inner tissues and promoting growth. Infection of E. coli USML2 was initiated by colonisation on the root surface, invasion of the interior root system followed by endophytic spreading. Inoculation of E. coli USML2 in the rice rhizosphere zone resulted in a significant increase in leaf numbers (33.3%), chlorophyll content (33.3%), shoot height (34.8%) and plant dry weight (90.4%) of 42 days old rice seedlings as compared to the control. These findings also demonstrated the ability of E. coli USML2 to spread endophytically which serves as a beneficial strategy for the bacterium to colonise the host plant and gain protection against adverse soil conditions. The genome of E. coli USML2 had also revealed predicted genes essential for endophytic bacterial colonisation and plant growth promotion which further proven potentials of E. coli USML2 as Plant Growth Promoting Endophyte (PGPE).


Soil Research ◽  
1990 ◽  
Vol 28 (2) ◽  
pp. 303 ◽  
Author(s):  
RF Brennan

The effect of moist incubation on the availability of applied zinc was examined on a range of Australian soils. Incubating soil with applied zinc decreased the uptake of zinc by subterranean clover and DTPA extractable zinc (ZnD) on all soils relative to freshly applied zinc. On soils where plant growth was increased by zinc application, prior incubation of the soil led to decreased plant growth responses to zinc. The relative effectiveness (RE) of zinc application for subterranean clover growth was measured by dry matter production, uptake of zinc by shoots and ZnD. Values obtained by all three methods of determining the RE were closely correlated. The extent of the decline in availability with incubation differed among soils being greater in alkaline soils, in soils with high clay contents, in soils with high levels of organic carbon , and in soils with free calcium carbonate. A multiple linear regression model was used to explain the relationship between the RE and the soil properties (r2 > 0.87).


2012 ◽  
Vol 27 (4) ◽  
pp. 477-482 ◽  
Author(s):  
Pankaj Kumar Srivastava ◽  
Belle Damodara Shenoy ◽  
Manjul Gupta ◽  
Aradhana Vaish ◽  
Shivee Mannan ◽  
...  

2007 ◽  
Vol 53 (1) ◽  
pp. 106-115 ◽  
Author(s):  
S A Wakelin ◽  
V V.S.R. Gupta ◽  
P R Harvey ◽  
M H Ryder

The phosphate solubilizing fungi Penicillium radicum, Penicillium bilaiae (strain RS7B-SD1), and an unidentified Penicillium sp. designated strain KC6-W2 were tested for their ability to increase the growth and phosphorus (P) nutrition of wheat, medic, and lentil in three soils of neutral to alkaline pH reaction. The strongest plant growth promoting (PGP) strain was Penicillium sp. KC6-W2, which stimulated significant increases in shoot growth and dry mass in seven of the nine experiments conducted. Levels of PGP by Penicillium sp. KC6-W2 ranged from 6.6% to 19% and were associated with increased uptake of P to the shoot. The PGP properties of Penicillium sp. KC6-W2 were evident on each of the three different plant species and soil types, a level of reliability not observed in other strains tested. Inoculation of seed with P. radicum increased lentil growth by 5.5% (P < 0.05) in soil from Tarlee but did not affect plant growth in the eight other experiments. Inoculation of plant seed with P. bilaiae RS7B-SD1 resulted in significant PGP in two of the nine experiments conducted. However, when significant, stimulation of PGP by P. bilaiae RS7B-SD1 was strong and resulted in increases in medic dry matter (19%) and lentil shoot dry matter (15%). A soil microcosm experiment investigated the effect of Penicillium fungi on cycling of soil P. Penicillium bilaiae RS7B-SD1 was the only fungus to significantly increase HCO3-extractable P (23% increase; P < 0.05). Production of phosphatase enzymes was not associated with increased HCO3-extractable P. Addition of carbon in the form of ryegrass seed significantly increased microbial respiration and movement of P to the microbial biomass (P < 0.05), but these parameters were irrespective of Penicillium treatment. This work has established the potential for use of Penicillium inoculants to increase plant growth on alkaline soils in Australia. The role of Penicillium fungi in plant P uptake and soil P cycling requires further exploration.Key words: Penicillium, phosphorus, plant growth promotion, phosphatase, rhizobia.


Sign in / Sign up

Export Citation Format

Share Document