Converting reactive iron, reactive aluminium, and phosphorus retention index (PRI) to the phosphorus buffering index (PBI) for sandy soils of south-western Australia

Soil Research ◽  
2007 ◽  
Vol 45 (4) ◽  
pp. 262 ◽  
Author(s):  
M. D. A. Bolland ◽  
D. P. Windsor

The recently developed phosphorus (P) buffering index (PBI) is now the national single-point P sorption index to rank the capacity of soil to sorb P. However, before PBI was developed, P sorption was routinely measured by 2 simple procedures in Western Australia: (i) since the mid 1970s, reactive iron (Fe), which is the concentration of Fe extracted from soil by ammonium oxalate; and (ii) since the mid 1980s, the P retention index (PRI), a single-point P sorption index. Both reactive Fe and aluminium (Al) extracted from soil by ammonium oxalalate (reactive Al) have been measured in experiments conducted in Western Australia. Because PBI is now routinely measured in Western Australia there is the need to convert historical reactive Fe, reactive Al, and PRI values to PBI values. In this study we used soil samples collected from 2 field studies and a study of 96 paddocks, all on sandy soil types common in the region, to measure PBI, reactive Fe, reactive Al (not measured in the paddock study), and PRI. We related PBI (dimensionless), as the dependent (y-axis), to reactive Fe (mg/kg), reactive Al (mg/kg), or PRI (mL/g), as the independent (x-axis). The relationships for all data were good for reactive Al (47 data points from the 2 field studies) and PRI (133 data points for the 2 field studies and the paddock study): --> However, the relationships was poor for reactive Fe (133 data points) and differed for each of the 2 field studies and the paddock study, so no consistent, reliable approach for converting reactive Fe to PBI values could be determined. We recommend that reactive Fe is no longer used in the region, and that only PBI is used to estimate P sorption.

Soil Research ◽  
2003 ◽  
Vol 41 (7) ◽  
pp. 1369 ◽  
Author(s):  
M. D. A. Bolland ◽  
D. G. Allen

Soil samples collected from 8 field experiments in Western Australia to which 5–8 amounts of superphosphate had been applied once only 13–23 years previously were used to measure the phosphorus (P) buffer capacity of soil (PBC) and P sorption by several single-point indices. PBC was estimated from well-defined P sorption curves when several levels of P were added to soil suspensions, and was the amount of P sorbed when the concentration of P in the final solution was raised from 0.25 to 0.35 mg P/L. The single-point P sorption indices were measured by adding one amount of P (10 mg P/L) to soil suspensions (1 : 20, soil : 0.02 M KCl or 0.01 M CaCl2). Three indices were calculated from the amount of P sorbed by soil (S, mg P/kg soil) and the amount of P in solution (c, mg P/L)—(1) the phosphorus retention index (PRI, S/c [L/kg]), (2) the Freundlich retention index (FRI, S/c0.35 [dimensionless]), and (3) the phosphorus sorption index (PSI, S/log10 [c × 1000] [dimensionless])—to provide PRI K & Ca, FRI K & Ca, and PSI K & Ca values. P sorption was also measured by the P buffer index (PBI), the new single-point P sorption index recommended for national use, to provide PBICa values. To estimate the previous P sorbed by soil (native soil P is negligible for these soils, so previously sorbed P originates from fertiliser P applied in a previous year), the amount of P extracted by 0.5 M sodium bicarbonate from soil (Colwell soil test P) was added to the amount of P sorbed by soil to calculate PRI*K & Ca, FRI*K & Ca, PSI*K & Ca, and PBI*Ca values. In addition, previously sorbed P was estimated using the q coefficient of the Freundlich equation; q was added to P sorption to calculate PSI**, FRI**, PSI** and PBI** values to take account of previously sorbed P.For the 8 experiments, PBC values significantly decreased where more fertiliser P had been applied to the soils 13–23 years previously. This indicated that the capacity of the 8 soils to sorb P decreased as more P was applied in a previous year, and a single-point P sorption index would need to reflect this decrease. As the amount of P applied to soil in the field plots increased, the following trends occurred : (1) Colwell soil test P always increased; (2) PRIK & Ca, FRIK & Ca, PSIK & Ca, and PBICa consistently decreased; (3) PRI*K & Ca, FRI*K & Ca, PSI*K & Ca, and PBI*Ca mostly increased, but with some values being unaffected or decreasing; (4) PRI**, FRI**, PSI**, and PBI** values were largely unaffected by the amount of P applied in a previous year. Evidently, either adding Colwell soil test P or q to P sorption to calculate the single-point P sorption indices mostly overestimated P sorption by the sandy, low P sorbing soils used, but the overestimate was larger for Colwell soil test P than for q.


2016 ◽  
Vol 51 (9) ◽  
pp. 1088-1098 ◽  
Author(s):  
Leandro Bortolon ◽  
Paulo Roberto Ernani ◽  
Elisandra Solange Oliveira Bortolon ◽  
Clesio Gianello ◽  
Rodrigo Gabriel Oliveira de Almeida ◽  
...  

Abstract The objective of this work was to assess the risk of phosphorus losses by runoff through an index based on the degree of P saturation (DPS), in cropland soils of Southern Brazil. Sixty-five highly representative cropland soils from the region were evaluated. Three labile P forms were measured (Mehlich-1, Mehlich-3, and ammonium oxalate), and four P sorption indexes were tested (phosphorus single sorption point and Fe+Al determined with the three extractors). Water-extractable P (WEP) was used as an index of P susceptibility to losses by surface runoff. The DPS was determined from the ratio between labile P and each sorption index. DPS values obtained from the ratio between Mehlich-1 P and the single P sorption point ranged from 1 to 25%, whereas those from Mehlich-1 P and Fe+Al (ammonium oxalate) ranged from 1 to 55%. All DPS types were highly correlated with WEP. From a practical stand point, the DPS obtained with both P and Fe+Al extracted with Mehlich-1 can be used to estimate the risk of P losses by runoff in soils of Southern Brazil.


Soil Research ◽  
2007 ◽  
Vol 45 (3) ◽  
pp. 182 ◽  
Author(s):  
M. Li ◽  
Y. L. Hou ◽  
B. Zhu

The understanding of phosphorus (P) sorption and desorption by soil is important for better managing soil P source and relieving water eutrophication. In this study, sorption–desorption behaviour of P was investigated in purple soils, collected from 3 kinds of purple parent materials with different kinds of land cover, in the upper reaches of Yangtze River, China, using a batch equilibrium technique. Results showed that most of the farmed purple soils had P sorption capacity (PSC) values ranging from 476 to 685 mg P/kg, while higher PSC values were observed in the soils from forestland and paddy field. A single-point P sorption index (PSI) was found to be significantly correlated with PSC (R2 = 0.94, P < 0.001), suggesting its use in estimating PSC across different types of purple soils. The PSC of purple soils was positively and strongly related to the contents of amorphous Fe and Al oxides (r = 0.73, P < 0.001), clay (r = 0.55, P < 0.01), and organic matter (r = 0.50, P < 0.05). Furthermore, the constant relating to binding strength was positively correlated with the content of amorphous Fe and Al oxides (r = 0.66, P < 0.01), but negatively correlated with labile Ca (r = –0.43, P < 0.05) and soil pH (r = –0.53, P < 0.01). Some acidic purple soils with high binding energy featured a power desorption curve, suggesting that P release risk can be accelerated once the P sorbed exceeds a certain threshold. Other soils with low binding energy demonstrated a linear desorption curve. The P desorption percentage was significantly correlated with soil test P (r = 0.78, P < 0.01) and the degree of P saturation (r = 0.82, P < 0.01), but negatively correlated with PSC (r = –0.66, P < 0.01).


Antiquity ◽  
1997 ◽  
Vol 71 (271) ◽  
pp. 116-123 ◽  
Author(s):  
Charles Dortch

Much of Australian prehistory lies under water. Although confined to the continent's extreme southwestern corner, field studies described in this report show that this submerged prehistoric component is very real, with numerous archaeological sites and former land surfaces awaiting investigation on the floors of Australia's lakes, rivers and estuaries, and on its submerged continental margins.


1990 ◽  
Vol 70 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Y. K. SOON

A greenhouse experiment was conducted to evaluate several P availability parameters using 17 soils from the Peace River region of northwestern Canada. Only one soil was calcareous; the rest were acidic. The extractants tested included alkaline bicarbonate, acidic fluoride and 0.01 M CaCl2 solutions, and an anion exchange resin. Other availability indices evaluated were phosphoric acid potentials, phosphate buffer capacity and single point P sorption indices. The phosphoric acid potentials gave the highest correlation with percent relative yield of barley dry matter obtained after about 7 wk of growth. P sorption indices were not correlated with any crop response index. The phosphate buffer capacity and resin-extractable P performed at least as well as three chemical extractants: Olsen, Kelowna and Miller-Axley (modified) extractants. These three extractions were further evaluated using yield data from 11 field experiments with barley and 10 with rapeseed. There was little to choose from between these three extractants; however, the Kelowna extractant is a multi-element extractant and more convenient to use than the Olsen method. The Kelowna extractant also has a better buffering capacity, thus giving it a slight advantage over the modified Miller-Axley method for calcareous soils. These soil tests are, however, not fully satisfactory. In the greenhouse study, the Kelowna and Olsen methods made two errors and the modified Miller-Axley method three errors in prediction of P fertilizer requirement or non-requirement for the experimental soils. Key words: Soil testing, phosphate potential, chemical extractants, P sorption index, critical level


2014 ◽  
Vol 27 (6) ◽  
pp. 415 ◽  
Author(s):  
Terry D. Macfarlane ◽  
Gregory J. Keighery

Field studies have provided an improved understanding of a known undescribed species of Tricoryne R.Br. and also shown that two or three separate species are included in an existing taxonomic concept. Two new species are described here, namely, T. tuberosa Keighery & T.D.Macfarl. and T. soullierae T.D.Macfarl. & Keighery. Tricoryne tuberosa has an extensive range in the northern wheatbelt and adjacent pastoral areas of south-western Western Australia. It has large root tubers, the leaves are withered at flowering time, and it forms clonal groups by long rhizomatous shoots. Tricoryne soullierae has a restricted distribution in remnant vegetation in the northern wheatbelt. It has fibrous roots and is conspicuously leafy when flowering.


2012 ◽  
Vol 63 (3) ◽  
pp. 24-30 ◽  
Author(s):  
Ewa Szara ◽  
Tomasz Sosulski

Abstract The study assesses the usefulness of different methods of determining the sorption properties of soils in relation to phosphorus in the agricultural soils from Central Poland in terms of the risk of environmental pollution posed by this component. As a reference parameter necessary to achieve the study.s objective, the sorption capacity of soils for phosphorus determined on the basis of the Langmuir model was used. The results of the tests were used to calculate the degrees of soil saturation with phosphorus: PE-R/Smax (Psat1); PE-R/PSI36 (Psat2), PM3/AlM3 + FeM3 (Psat3); Pox/Alox+Feox (Psat4); PE-R/AlM3+FeM3 (Psat5); PE-R/ Alox+Feox (Psat6). The usefulness of these indicators for assessing the risk of phosphorus emissions from agricultural land was determined on the basis of the coefficients of their correlation with the amount of active phosphorus in the soil. The study proved the usefulness of the Mehlich-3 and acid ammonium oxalate solutions for assessing the sorption capacity and the degree of saturation with phosphorus of typical Polish agricultural soils. For identifying the risk of phosphorus leaching from the soils, the parameter that specifies the extent of soil saturation with phosphorus as determined by the Egner-Riehm test and the sorption index (PSI) obtained by equilibrating the soils with a solution containing 36 mg P dm.3 at the soil-to-solution ratio of 1:10 (Psat2) were also found useful.


2019 ◽  
Author(s):  
Zachary P. Simpson ◽  
Richard W. McDowell ◽  
Leo M. Condron

Abstract. Streams can attenuate inputs of phosphorus (P) and, therefore the likelihood of ecosystem eutrophication. This attenuation is, however, poorly understood, particularly in reference to the geochemical mechanisms involved. In our study, we measured P attenuation mechanisms in the form of (1) mineral (co-)precipitation from the water-column and (2) P sorption with benthic sediments. We hypothesized that both mechanisms would vary with catchment geology and, further, that P sorption would depend on reactive Fe content in sediments. We sampled 31 streams at baseflow conditions, covering a gradient of P inputs (via land use), hydrological characteristics, and catchment geologies. Geochemical equilibria in the water-column were measured and benthic sediments ( 90 %) and varied with parent geology. Similarly, most sediment Fe was in a recalcitrant form (generally > 90–95 %). However, despite its small contribution to total sediment Fe, the pool of surface-reactive Fe was a strong predictor for sediment P sorption potential. Our results suggest that, in these streams, it is the combination of biogeochemical Fe and P cycles and the exchange with the hyporheic zone that attenuates DRP in baseflow. Such combinations are likely to vary spatiotemporally within a catchment and must be considered alongside inputs of P and sediment if the P concentrations at baseflow – and eutrophication risk – are to be well managed.


Soil Research ◽  
1991 ◽  
Vol 29 (5) ◽  
pp. 603 ◽  
Author(s):  
B Singh ◽  
RJ Gilkes

The P sorption characteristics of 97 soils that are representative of the agricultural areas of Western Australia were described using Langmuir and Freundlich equations. The Langmuir P maximum (xm) ranged from 11 to 2132 �g g-1 soil and the Freundlich k coefficient ranged from 1 to 1681. Clay content, DCB Fe and Al, oxalate Fe and AL, and pyrophosphate Al were positively related to xm and k. By using stepwise regression analysis, the combination of DCB and oxalate-soluble A1 predicted more than 75% Of the variation in the P sorption coefficients. Reactive Al compounds may thus be responsible for much of the P sorption by these soils. Soil pH in 1 M NaF (pH 8.2), which is normally used for the detection of allophanic material, was strongly related to the P sorption coefficients and might therefore be used as a quick test for predicting the P sorption capacity of soils.


2007 ◽  
Vol 87 (5) ◽  
pp. 511-521 ◽  
Author(s):  
Babasola Ajiboye ◽  
Olalekan O Akinremi ◽  
Geza J Racz ◽  
Donald N Flaten

Regulation of manure application in Manitoba has raised the question of whether or not biosolids application should be regulated in the same way. This study examined the effects of biosolids (BIO) applications on P sorption characteristics of a Vertisol in comparison with dairy cattle (DAIRY) and hog (HOG) manures, and monoammonium phosphate (MAP) fertilizer using the classical sorption isotherm and single point sorption index. Pertinent chemical properties and degree of P saturation (DPS) were also determined. The sorption maximum (Smax) in the control was reduced from 655 mg kg-1, to a range of 536–655 mg kg-1 with BIO, 559–650 mg kg-1 with MAP, 402–568 mg kg-1 with DAIRY, and 350–587 mg kg-1 with HOG depending upon the rate of P added. The lower DPS in the soil amended with BIO suggests a lower risk of P loss with biosolids compared with manures. The higher P sorption capacity of biosolids-amended soils compared with soils amended with manures suggest that Ca added with BIO increased the number of P sorption sites by a similar proportion to the amount of P added. Key words: Biosolids, P sorption isotherm, degree of P saturation, labile P, non-labile P


Sign in / Sign up

Export Citation Format

Share Document