Influence of biosolids on phosphorus sorption characteristics of a Vertisol in comparison with manures and fertilizer

2007 ◽  
Vol 87 (5) ◽  
pp. 511-521 ◽  
Author(s):  
Babasola Ajiboye ◽  
Olalekan O Akinremi ◽  
Geza J Racz ◽  
Donald N Flaten

Regulation of manure application in Manitoba has raised the question of whether or not biosolids application should be regulated in the same way. This study examined the effects of biosolids (BIO) applications on P sorption characteristics of a Vertisol in comparison with dairy cattle (DAIRY) and hog (HOG) manures, and monoammonium phosphate (MAP) fertilizer using the classical sorption isotherm and single point sorption index. Pertinent chemical properties and degree of P saturation (DPS) were also determined. The sorption maximum (Smax) in the control was reduced from 655 mg kg-1, to a range of 536–655 mg kg-1 with BIO, 559–650 mg kg-1 with MAP, 402–568 mg kg-1 with DAIRY, and 350–587 mg kg-1 with HOG depending upon the rate of P added. The lower DPS in the soil amended with BIO suggests a lower risk of P loss with biosolids compared with manures. The higher P sorption capacity of biosolids-amended soils compared with soils amended with manures suggest that Ca added with BIO increased the number of P sorption sites by a similar proportion to the amount of P added. Key words: Biosolids, P sorption isotherm, degree of P saturation, labile P, non-labile P

Soil Research ◽  
2007 ◽  
Vol 45 (3) ◽  
pp. 182 ◽  
Author(s):  
M. Li ◽  
Y. L. Hou ◽  
B. Zhu

The understanding of phosphorus (P) sorption and desorption by soil is important for better managing soil P source and relieving water eutrophication. In this study, sorption–desorption behaviour of P was investigated in purple soils, collected from 3 kinds of purple parent materials with different kinds of land cover, in the upper reaches of Yangtze River, China, using a batch equilibrium technique. Results showed that most of the farmed purple soils had P sorption capacity (PSC) values ranging from 476 to 685 mg P/kg, while higher PSC values were observed in the soils from forestland and paddy field. A single-point P sorption index (PSI) was found to be significantly correlated with PSC (R2 = 0.94, P < 0.001), suggesting its use in estimating PSC across different types of purple soils. The PSC of purple soils was positively and strongly related to the contents of amorphous Fe and Al oxides (r = 0.73, P < 0.001), clay (r = 0.55, P < 0.01), and organic matter (r = 0.50, P < 0.05). Furthermore, the constant relating to binding strength was positively correlated with the content of amorphous Fe and Al oxides (r = 0.66, P < 0.01), but negatively correlated with labile Ca (r = –0.43, P < 0.05) and soil pH (r = –0.53, P < 0.01). Some acidic purple soils with high binding energy featured a power desorption curve, suggesting that P release risk can be accelerated once the P sorbed exceeds a certain threshold. Other soils with low binding energy demonstrated a linear desorption curve. The P desorption percentage was significantly correlated with soil test P (r = 0.78, P < 0.01) and the degree of P saturation (r = 0.82, P < 0.01), but negatively correlated with PSC (r = –0.66, P < 0.01).


2016 ◽  
Vol 51 (9) ◽  
pp. 1088-1098 ◽  
Author(s):  
Leandro Bortolon ◽  
Paulo Roberto Ernani ◽  
Elisandra Solange Oliveira Bortolon ◽  
Clesio Gianello ◽  
Rodrigo Gabriel Oliveira de Almeida ◽  
...  

Abstract The objective of this work was to assess the risk of phosphorus losses by runoff through an index based on the degree of P saturation (DPS), in cropland soils of Southern Brazil. Sixty-five highly representative cropland soils from the region were evaluated. Three labile P forms were measured (Mehlich-1, Mehlich-3, and ammonium oxalate), and four P sorption indexes were tested (phosphorus single sorption point and Fe+Al determined with the three extractors). Water-extractable P (WEP) was used as an index of P susceptibility to losses by surface runoff. The DPS was determined from the ratio between labile P and each sorption index. DPS values obtained from the ratio between Mehlich-1 P and the single P sorption point ranged from 1 to 25%, whereas those from Mehlich-1 P and Fe+Al (ammonium oxalate) ranged from 1 to 55%. All DPS types were highly correlated with WEP. From a practical stand point, the DPS obtained with both P and Fe+Al extracted with Mehlich-1 can be used to estimate the risk of P losses by runoff in soils of Southern Brazil.


2005 ◽  
Vol 85 (3) ◽  
pp. 417-426 ◽  
Author(s):  
D V Ige ◽  
O O Akinremi ◽  
D N Flaten ◽  
B. Ajiboye ◽  
M A Kashem

The establishment of the P retention capacity of soil in Manitoba is essential for effective management of P in the region. However, the methods for determining the P retention capacity for neutral to calcareous soils in the Eastern Prairies are not well developed. The objectives of this study were to determine the P retention capacity of Manitoba soils and to generate equations that relate these capacities to other soil properties. One hundred and fifteen archived surface soils were selected and their physico-chemical properties were measured. These soils were used to generate a single-point P adsorption index by equilibrating 2 g of soil in 20 mL of 0.01 M KCl solution containing either 150 (P150) or 400 (P400) mg P L-1. A subset of 26 of these soils was used for multipoint isotherms with P concentrations in the range of 0–1000 mg P L-1. The data obtained were fitted to the Langmuir isotherm and the adsorption indices were correlated with the various soil properties that were then used to developed predictive equations of the P retention capacity of the soil. The values of the adsorption index, P150, obtained from the single point adsorption study using 150 mg P L-1, ranged between 88 and 891 mg P kg-1, while that of P400 ranged between 100 and 1250 mg P kg-1. A better correlation was obtained between P150 and soil properties compared with P400. For the 26 soil subset, the adsorption indices, Smax1 to Smax 6, obtained from the Langmuir isotherm, ranged from 300 to 1330 mg kg-1. A good correlation was obtained between the single point index and the multipoint isotherm (r = 0.93). Hence, Smax for the 115 soils was estimated from the relationship between P150 and Smax 3 of the 26 soils. The best relationships between the adsorption parameters, P150 and Smax, and the soil properties were obtained with the sum of Mehlich-3 extractable Ca and Mg (R2= 0.66) and the sum of exchangeable Ca and Mg (R2= 0.64). Mehlich-3-Ca and -Mg each explained 56% of the variation, while clay content explained 40% of the variation in the P retention capacity of these soils. Unlike the widely reported influence of Al and Fe in acid soils, our study showed that the retention of P in Manitoba soils was influenced more by Ca and Mg and soil texture. Key words: Phosphorus, phosphorus retention capacity, phosphorus adsorption capacity, phosphorus sorption, single-point index


2009 ◽  
Vol 44 (3) ◽  
pp. 243-252 ◽  
Author(s):  
Yang Liu ◽  
Qiang Fu ◽  
Chengqing Yin

Abstract The movement, transformation, and assimilation of phosphorus (P) in a watershed are often related to the physicochemical characteristics of the sediments of the water storage structures in the watershed. Field and laboratory experiments were conducted to study P sorption by pond sediments in a multipond system in a watershed of 6.9 km2 in southeastern China. Being scattered in different ambient land uses, and receiving soil particles from various sources, the multipond system provides an excellent research example for P sorption as well as the relationship between pond properties and their location in a watershed. It was found that the pond sediments showed largely variable P sorption capacities in this watershed. The P sorption maximum (Smax) ranged from 390.0 to 729.2 mg/kg, and equilibrium P concentration (EPC0) ranged from 0.007 to 0.023 mg/L. The mean degree of P saturation (DPS) of the pond sediments was only 9.5%. Due to the large annual delivery of sediments to the ponds by soil erosion, the pond sediments never reached saturation. The location of the ponds could influence the physicochemical properties of sediments and their sorption characteristics. For Smax, the Hill pond value was significantly higher than that for the Village pond. For EPC0, the result was reverse. The oxalate-extractable Fe (Ox-Fe) and KCl-extractable P (KCl-P) were the key factors that influenced P sorption of the pond sediments. Ox-Fe could explain 84% of the variability in Smax and KCl-P could explain 82% of the variability in EPC0. The acidic and high Fe contents of laterite soil in southeastern China was the most important cause of the high P sorption capacity of the pond sediments.


Soil Research ◽  
1991 ◽  
Vol 29 (5) ◽  
pp. 603 ◽  
Author(s):  
B Singh ◽  
RJ Gilkes

The P sorption characteristics of 97 soils that are representative of the agricultural areas of Western Australia were described using Langmuir and Freundlich equations. The Langmuir P maximum (xm) ranged from 11 to 2132 �g g-1 soil and the Freundlich k coefficient ranged from 1 to 1681. Clay content, DCB Fe and Al, oxalate Fe and AL, and pyrophosphate Al were positively related to xm and k. By using stepwise regression analysis, the combination of DCB and oxalate-soluble A1 predicted more than 75% Of the variation in the P sorption coefficients. Reactive Al compounds may thus be responsible for much of the P sorption by these soils. Soil pH in 1 M NaF (pH 8.2), which is normally used for the detection of allophanic material, was strongly related to the P sorption coefficients and might therefore be used as a quick test for predicting the P sorption capacity of soils.


2008 ◽  
Vol 10 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Arief Hartono

The effect of calcium silicate CaSiOJ the phosphorus (P) sorption characteristics were studied in Andisols Lembang.The amount of 0, 2.5 and 5% CaSiOJ (calcium silicate) or 0, 7.5 and 15 g calcium silicate per pot was added to the 300 g(oven-dry weight) soil and incubated for one month. A completely randomized design in double replication was set up. After one month incubation, P sorption and P sorption kinetic experiments were conducted The results of P sorption experiment showed that P sorption data were satisfactorily described by the Langmuir equation. which was used to determine P sorption maxima, bonding energies and P sorbed at 0.2 mg P £"' (standard P requirement). The application of calcium silicate did not affect significantly P sorption maxima but decreased significantly the P bonding energies. Calcium silicate also decreased significantly the standard P requirements. As for P sorption kinetic experiment. the results showed that application of 5% calcium silicate decreased significantly the rate constant of P sorption and P sorbed maximum at given amount of added P. The results suggested that the application of calcium silicate to the Andisols made added P was more available for plant.


Soil Research ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 365 ◽  
Author(s):  
I. C. R. Holford ◽  
C. Hird ◽  
R. Lawrie

Two groups of soils were examined to determine the effects of dairy, pig, or sewage effluent and other materials containing phosphorus (P) on their P sorption characteristics, using the Langmuir equation to estimate values of both sorption capacity and sorption strength. There were 19 soils (0-15 cm) from 6 sites in the Williams River catchment and 3 soils (0-100 cm) from Bermagui, all from coastal New South Wales. Effluent usually decreased P sorption capacities of the Williams River soils, and in 3 soils the capacities were reduced to zero. Sorption strength was reduced substantially by effluent treatment in all soils except one, which had received effluent for only 3 years. Sorption strength, but not necessarily capacity, was also lower after treatment with poultry manure or chicken litter than after treatment with superphosphate only. Where effluent did not decrease sorption capacity there was a substantial increase in total carbon and iron, both of which could increase sorption capacities. After 3 years of effluent treatment of the Bermagui soil, sorption capacities had been reduced in the top 70 cm depth, the extent of the reduction varying from 17% at 0-7 · 5 cm depth to 38% at 40-70 cm depth. Sorption strength was reduced in the top 40 cm depth only. After 12 years of effluent treatment, sorption capacities and strength had also decreased at the deeper sampling depths (to 100 cm), and the average reduction in capacity was about 40%. These results suggest that P leaching will begin well before the total sorption capacity has been saturated. There was a direct and significant correlation between the sorption strength of the untreated soil and the percentage saturation reached before leaching began. Further saturation of the sorption complex appears to be slow after this degree of saturation has been reached, and it seems that P leaching exceeds adsorption during this phase. There was also a negative correlation between sorption strength and KCl-soluble P in all soils, suggesting that soil P solubility and potential saturation are both controlled by this characteristic.


Soil Research ◽  
2002 ◽  
Vol 40 (3) ◽  
pp. 497 ◽  
Author(s):  
L. L. Burkitt ◽  
P. W. Moody ◽  
C. J. P. Gourley ◽  
M. C. Hannah

Soil phosphorus (P) buffering capacity (PBC) is an important soil property that influences the amount of P fertiliser available for plant uptake. However, current methods of determining PBC are time-consuming and uneconomic in most commercial soil testing programs. The current study examined simpler methods of measuring the PBC of a wide range of Australian soils. Phosphorus sorption and extractable P data from 290 soils (initial data set) were collated to define the range of PBC values of Australian agricultural soils. Independently, detailed chemical and physical analyses were undertaken on a second set of 90 agricultural soils (principal data set), which were selected to represent the range of soil properties measured on the initial data set. Relationships between PBCO&S (Ozanne and Shaw 1968) values (P sorbed between solution P concentrations of 0.25 and 0.35 mg P/L) and 11 different single-point P sorption indices and selected soil properties were examined for the principal data set. Whilst relationships between PBCO&S values and selected soil properties such as oxalate-extractable iron and aluminium, and clay content, were generally poor, strong relationships existed between all of the single-point P sorption indices and PBCO&S. Results suggest that PBCO&S values were most closely related to the P buffering indices (PBI+ColP and PBI+OlsP) when a single addition of 1000 mg P/kg was added to soil and either the Colwell or 4.59 Olsen extractable P were added to the amount of P sorbed: PBI+ColP = (Ps + Colwell P)/c0.41 PBI+OlsP = (Ps + 4.59 Olsen P)/c0.41 where Ps is the amount of P sorbed (mg P/kg) from a single addition of 1000 mg P/kg, and c is the resulting solution P concentration (mg P/L). This index provides a simple and accurate method for estimating PBC, a fundamental soil property that influences the P fertiliser requirements of different soil types. phosphorus sorption capacity, single-point phosphorus sorption index, phosphorus retention index, soil properties, Colwell phosphorus, Olsen phosphorus.


2019 ◽  
Vol 11 (2) ◽  
pp. 58-62
Author(s):  
Arief Hartono

Acid upland smectitic soil is identified by high amount of exchangeable Al due to the weathering of aluminum (Al) octahedral layer by H+ saturation and by very low phosphorus (P) status.  Calcium carbonate (CaCO3) and calcium silicate (CaSiO3) were commonly used to decrease exchangeable Al and increase soil pH.  Laboratory experiments were conducted with clayey smectitic Typic Paleudults from Gajrug region, West Java.  The CaCO3 and CaSiO3 were added at rates to replace 0, 1.5 or 3 times of exchangeable Al. After one month of incubation, P sorption kinetic experiments were conducted.   The changes in some chemical properties after one month incubation showed that both CaCO3 and CaSiO3 increased the soil pH, exchangeable Ca, and base saturation  but did not increase the cation exchange capacity.  The results of the experiment showed that both CaCO3 and CaSiO3 decreased the rate constant value of first order kinetic equation (k) and the P sorbed maximum (a) at given amount of added P compared to Control.The CaCO3 was better than CaSiO3 in decreasing k values and on the contrary for a values. The decrease in P maximum sorption and the rate constant of the soil amended with CaSiO3 and CaCO3 due to occupation of P sorption sites by silicates and hydroxyl ions. The CaCO3with the rate to replace 1.5 x exchangeable Al was recommended to decrease the rate constant of P sorption. However, the CaSiO3 at the rate to replace 3 x exchangeable Al was recommended to decrease the maximum P sorption.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 676 ◽  
Author(s):  
L. L. Burkitt ◽  
P. W. G. Sale ◽  
C. J. P. Gourley

Soil phosphorus (P) sorption is an important and relatively stable soil property which dictates the equilibrium between sorbed and solution P. Soil P sorption measures are commonly adjusted for the effect of current P fertility on the amount of P a soil sorbs. In the case of highly fertilised agricultural soils, however, this adjustment is likely to be inappropriate as it may mask changes in a soil’s capacity to sorb P, which could affect future P fertiliser applications. A study was undertaken to compare adjusted or unadjusted methods of measuring P sorption using 9 pasture soils sampled from southern Victoria which had previously received P fertiliser and lime. The P sorption assessment methods included: P sorption isotherms, P-buffering capacity (PBC) measures (slope between equilibrium P concentration of 0.25 and 0.35 mg P/L), and single-point P-buffering indices (PBI), with methods either adjusted or unadjusted for current P fertility. A single application of 280 kg P/ha, 6 months before sampling, resulted in a general negative displacement of unadjusted P sorption isotherm curves, indicating reduced P sorption on 8 of the 9 soils. Adding the Colwell extractable P concentration to the amount of P sorbed before calculating the slope (PBC+ColP), tended to negate this fertiliser effect and, in 2 of the 9 soils, resulted in a significant increase in PBC+ColP values. Increasing rates of P fertiliser application (up to 280 kg P/ha) resulted in a consistent trend to decreasing PBI values (unadjusted for Colwell P), which was significant at 4 of the 9 sites after 6 months. However, only minimal changes in PBI values were determined when PBI was adjusted for current P fertility (PBI+ColP). Phosphorus sorption properties appeared reasonably stable over time, although 2 soils, both Ferrosols, indicated significant linear increases in PBI values when these sites remained unfertilised for 30 months. Lime significantly increased both PBI and PBI+ColP values at all sites 6 months after application, but the effect generally diminished after 30 months, suggesting PBI measurements should not be taken immediately after liming. These results demonstrate that unadjusted measures of P sorption are more likely to accurately reflect changes in soil P sorption capacity following P fertiliser applications and suggest that the unadjusted PBI be used in commercial soil testing rather that the currently adjusted PBI+ColP.


Sign in / Sign up

Export Citation Format

Share Document