Phosphorus sorption by sandy soils from Western Australia: effect of previously sorbed P on P buffer capacity and single-point P sorption indices

Soil Research ◽  
2003 ◽  
Vol 41 (7) ◽  
pp. 1369 ◽  
Author(s):  
M. D. A. Bolland ◽  
D. G. Allen

Soil samples collected from 8 field experiments in Western Australia to which 5–8 amounts of superphosphate had been applied once only 13–23 years previously were used to measure the phosphorus (P) buffer capacity of soil (PBC) and P sorption by several single-point indices. PBC was estimated from well-defined P sorption curves when several levels of P were added to soil suspensions, and was the amount of P sorbed when the concentration of P in the final solution was raised from 0.25 to 0.35 mg P/L. The single-point P sorption indices were measured by adding one amount of P (10 mg P/L) to soil suspensions (1 : 20, soil : 0.02 M KCl or 0.01 M CaCl2). Three indices were calculated from the amount of P sorbed by soil (S, mg P/kg soil) and the amount of P in solution (c, mg P/L)—(1) the phosphorus retention index (PRI, S/c [L/kg]), (2) the Freundlich retention index (FRI, S/c0.35 [dimensionless]), and (3) the phosphorus sorption index (PSI, S/log10 [c × 1000] [dimensionless])—to provide PRI K & Ca, FRI K & Ca, and PSI K & Ca values. P sorption was also measured by the P buffer index (PBI), the new single-point P sorption index recommended for national use, to provide PBICa values. To estimate the previous P sorbed by soil (native soil P is negligible for these soils, so previously sorbed P originates from fertiliser P applied in a previous year), the amount of P extracted by 0.5 M sodium bicarbonate from soil (Colwell soil test P) was added to the amount of P sorbed by soil to calculate PRI*K & Ca, FRI*K & Ca, PSI*K & Ca, and PBI*Ca values. In addition, previously sorbed P was estimated using the q coefficient of the Freundlich equation; q was added to P sorption to calculate PSI**, FRI**, PSI** and PBI** values to take account of previously sorbed P.For the 8 experiments, PBC values significantly decreased where more fertiliser P had been applied to the soils 13–23 years previously. This indicated that the capacity of the 8 soils to sorb P decreased as more P was applied in a previous year, and a single-point P sorption index would need to reflect this decrease. As the amount of P applied to soil in the field plots increased, the following trends occurred : (1) Colwell soil test P always increased; (2) PRIK & Ca, FRIK & Ca, PSIK & Ca, and PBICa consistently decreased; (3) PRI*K & Ca, FRI*K & Ca, PSI*K & Ca, and PBI*Ca mostly increased, but with some values being unaffected or decreasing; (4) PRI**, FRI**, PSI**, and PBI** values were largely unaffected by the amount of P applied in a previous year. Evidently, either adding Colwell soil test P or q to P sorption to calculate the single-point P sorption indices mostly overestimated P sorption by the sandy, low P sorbing soils used, but the overestimate was larger for Colwell soil test P than for q.

Soil Research ◽  
2007 ◽  
Vol 45 (3) ◽  
pp. 182 ◽  
Author(s):  
M. Li ◽  
Y. L. Hou ◽  
B. Zhu

The understanding of phosphorus (P) sorption and desorption by soil is important for better managing soil P source and relieving water eutrophication. In this study, sorption–desorption behaviour of P was investigated in purple soils, collected from 3 kinds of purple parent materials with different kinds of land cover, in the upper reaches of Yangtze River, China, using a batch equilibrium technique. Results showed that most of the farmed purple soils had P sorption capacity (PSC) values ranging from 476 to 685 mg P/kg, while higher PSC values were observed in the soils from forestland and paddy field. A single-point P sorption index (PSI) was found to be significantly correlated with PSC (R2 = 0.94, P < 0.001), suggesting its use in estimating PSC across different types of purple soils. The PSC of purple soils was positively and strongly related to the contents of amorphous Fe and Al oxides (r = 0.73, P < 0.001), clay (r = 0.55, P < 0.01), and organic matter (r = 0.50, P < 0.05). Furthermore, the constant relating to binding strength was positively correlated with the content of amorphous Fe and Al oxides (r = 0.66, P < 0.01), but negatively correlated with labile Ca (r = –0.43, P < 0.05) and soil pH (r = –0.53, P < 0.01). Some acidic purple soils with high binding energy featured a power desorption curve, suggesting that P release risk can be accelerated once the P sorbed exceeds a certain threshold. Other soils with low binding energy demonstrated a linear desorption curve. The P desorption percentage was significantly correlated with soil test P (r = 0.78, P < 0.01) and the degree of P saturation (r = 0.82, P < 0.01), but negatively correlated with PSC (r = –0.66, P < 0.01).


Soil Research ◽  
2007 ◽  
Vol 45 (4) ◽  
pp. 262 ◽  
Author(s):  
M. D. A. Bolland ◽  
D. P. Windsor

The recently developed phosphorus (P) buffering index (PBI) is now the national single-point P sorption index to rank the capacity of soil to sorb P. However, before PBI was developed, P sorption was routinely measured by 2 simple procedures in Western Australia: (i) since the mid 1970s, reactive iron (Fe), which is the concentration of Fe extracted from soil by ammonium oxalate; and (ii) since the mid 1980s, the P retention index (PRI), a single-point P sorption index. Both reactive Fe and aluminium (Al) extracted from soil by ammonium oxalalate (reactive Al) have been measured in experiments conducted in Western Australia. Because PBI is now routinely measured in Western Australia there is the need to convert historical reactive Fe, reactive Al, and PRI values to PBI values. In this study we used soil samples collected from 2 field studies and a study of 96 paddocks, all on sandy soil types common in the region, to measure PBI, reactive Fe, reactive Al (not measured in the paddock study), and PRI. We related PBI (dimensionless), as the dependent (y-axis), to reactive Fe (mg/kg), reactive Al (mg/kg), or PRI (mL/g), as the independent (x-axis). The relationships for all data were good for reactive Al (47 data points from the 2 field studies) and PRI (133 data points for the 2 field studies and the paddock study): --> However, the relationships was poor for reactive Fe (133 data points) and differed for each of the 2 field studies and the paddock study, so no consistent, reliable approach for converting reactive Fe to PBI values could be determined. We recommend that reactive Fe is no longer used in the region, and that only PBI is used to estimate P sorption.


Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 503 ◽  
Author(s):  
MDA Bolland ◽  
IR Wilson ◽  
DG Allen

Twenty-three virgin Western Australian soils of different buffer capacities (BC) for phosphorus (P) were collected. The effects of BC on the relationships between Colwell soil test P and the level of P applied, yield and soil test P, and yield and the level of P applied were studied. Wheat (Triticum aestivum cv. Reeves), grown for 27 days in a glasshouse, was used. Two methods of measuring P sorption of soils, P buffer capacity (PBC) and P retention index (PRI), were used. The PBC is determined from a multi-point sorption curve. The PRI is a new, diagnostic, one-point, sorption method now widely used for commercial soil P testing in Western Australia. Both PBC and PRI produced similar results. The relationship between soil test P and the level of P applied was adequately described by a linear equation. When the slope coefficient of the linear equations was related to PBC or PRI, there was no relationship. The other two relationships were adequately described by a Mitscherlich equation. When the curvature coefficient of the Mitscherlich equation was related to PBC or PRI, the trend was for the value of the coefficient to decrease with increasing PBC or PRI. Consequently, as the capacity of the soil to sorb P increased the trend was for larger soil test P or higher levels of P application to produce the same yield.


1990 ◽  
Vol 70 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Y. K. SOON

A greenhouse experiment was conducted to evaluate several P availability parameters using 17 soils from the Peace River region of northwestern Canada. Only one soil was calcareous; the rest were acidic. The extractants tested included alkaline bicarbonate, acidic fluoride and 0.01 M CaCl2 solutions, and an anion exchange resin. Other availability indices evaluated were phosphoric acid potentials, phosphate buffer capacity and single point P sorption indices. The phosphoric acid potentials gave the highest correlation with percent relative yield of barley dry matter obtained after about 7 wk of growth. P sorption indices were not correlated with any crop response index. The phosphate buffer capacity and resin-extractable P performed at least as well as three chemical extractants: Olsen, Kelowna and Miller-Axley (modified) extractants. These three extractions were further evaluated using yield data from 11 field experiments with barley and 10 with rapeseed. There was little to choose from between these three extractants; however, the Kelowna extractant is a multi-element extractant and more convenient to use than the Olsen method. The Kelowna extractant also has a better buffering capacity, thus giving it a slight advantage over the modified Miller-Axley method for calcareous soils. These soil tests are, however, not fully satisfactory. In the greenhouse study, the Kelowna and Olsen methods made two errors and the modified Miller-Axley method three errors in prediction of P fertilizer requirement or non-requirement for the experimental soils. Key words: Soil testing, phosphate potential, chemical extractants, P sorption index, critical level


Soil Research ◽  
2003 ◽  
Vol 41 (6) ◽  
pp. 1185 ◽  
Author(s):  
M. D. A. Bolland ◽  
D. G. Allen ◽  
K. S. Walton

Soil samples were collected from 14 long-term field experiments in south-western Australia to which several amounts of superphosphate or phosphate rock had been applied in a previous year. The samples were analysed for phosphorus (P) by the Colwell sodium bicarbonate procedure, presently used in Western Australia, and the Mehlich 3 procedure, being assessed as a new multi-element test for the region. For the Mehlich procedure, the concentration of total and inorganic P in the extract solution was measured. The soil test values were related to yields of crops and pasture measured later on in the year in which the soil samples were collected.The Mehlich 3 procedures (Mehlich 3 total and Mehlich 3 inorganic soil test P values) were similar, with the total values mostly being slightly larger. For soil treated with superphosphate, for each year of each experiment: (i) Mehlich 3 values were closely correlated with Colwell values; and (ii) the relationship between plant yield and soil test P (the soil P test calibration) was similar for the Colwell and Mehlich 3 procedures. However, for soil treated with phosphate rock, the Colwell procedure consistently produced lower soil test P values than the Mehlich 3 procedure, and the calibration relating plant yield to soil test P was different for the Colwell and Mehlich 3 procedures, indicating, for soils treated with phosphate rock, separate calibrations are required for the 2 procedures. We conclude that for soils of south-western Australia treated with superphosphate (most of the soils), the Mehlich 3 procedure can be used instead of the Colwell procedure to measure soil test P, providing support for the Mehlich 3 procedure to be developed as the multi-element soil test for the region.


2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.


Soil Research ◽  
2010 ◽  
Vol 48 (8) ◽  
pp. 682 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. K. Russell

Soil testing was conducted during 1999–2009 to determine lime and fertiliser phosphorus (P), potassium (K), and sulfur (S) requirements of intensively grazed, rain-fed, ryegrass dairy pastures in 48 paddocks on sand to sandy loam soils in the Mediterranean-type climate of south-western Australia. The study demonstrated that tissue testing was required in conjunction with soil testing to confirm decisions based on soil testing, and to assess management decisions for elements not covered by soil testing. Soil testing for pH was reliable for indicating paddocks requiring lime to ameliorate soil acidity, and to monitor progress of liming. Soil P testing proved reliable for indicating when P fertiliser applications were required, with no P being required when soil-test P was above the critical value for that soil, and when no P was applied, tissue testing indicated that P remained adequate for ryegrass production. Soil testing could not be used to determine paddocks requiring fertiliser K and S, because both elements can leach below the root-zone, with rainfall determining the extent of leaching and magnitude of the decrease in pasture production resulting from deficiency, which cannot be predicted. The solution is to apply fertiliser K and S each year, and use tissue testing to improve fertiliser K and S management. Research has shown that, for dairy and other grazing industries in the region, laboratories need measure and report every year soil pH and soil-test P only, together with measuring every 3–5 years the P-buffering index (estimating P sorption of soil), organic carbon content, and electrical conductivity.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 525g-526
Author(s):  
N.M. El-Hout ◽  
C.A. Sanchez

The production of lettuce (Lactuca sativa L.) types other than crisphead (i.e., leaf, boston, bibb, and romaine) has recently increased due to expanding consumer demand. Fertilizer P recommendations for these lettuce types are largely based on soil-test calibrations for the crisphead type only. However, biomass production and morphological traits of the different lettuce types vary. Four field experiments were conducted to compare the relative efficiencies of these lettuce types to P fertilization. All lettuce types showed large yield and quality responses to P. Because environmental conditions affected yield potential, P rates required for optimal yield varied by lettuce type within experiments. However, the P rates required for optimal yield were similar over all experiments. Furthermore, the relationship between relative yield and soil-test P across all seasons showed a similar soil-test P level was required for maximum yield of all lettuce types. The results of this study show that soil-test-based fertilizer recommendations for crisphead lettuce may be adequate for all lettuce types


1992 ◽  
Vol 43 (6) ◽  
pp. 1535 ◽  
Author(s):  
C Pailles ◽  
PW Moody

Phosphorus (P) sorption-desorption characteristics were determined for 11 sediments from the Johnstone Rivers catchment, northern Queensland. Sediments were selected to cover a range in values of Bray extractable P from 0.1 to 10.4 mg P kg-1. P sorption curves were determined by using 0.01 M NaCl to simulate fluvial water conditions and, on a restricted number of sediments, 0.5 M NaCl to simulate sea water. The amounts of P released in 10 successive extractions for 30 min with 0.01 M CaCl2 were determined for each sediment. The amounts of P desorbed either declined to nondetectable levels or declined to a constant amount. These desorption curves were used to delineate 'rapidly desorbable' P from 'slowly desorbable' P. Bray extractable P and adsorption characteristics (equilibrium solution P concentration and P buffer capacity) were poorly correlated with 'rapidly desorbable' P. Most sediments in the suite would act as P sinks in both fluvial and marine environments because their equilibrium P concentrations are lower than the dissolved inorganic P concentrations of their respective water columns. For those sediments acting as potential sources (5 from 11 in 0.01 M NaC1, 2 from 6 in 0.5 M NaCl), amounts of P that could potentially be desorbed into the fluvial water column ranged from 0.1 to 3.9 mg P kg-1 sediment.


Soil Research ◽  
1991 ◽  
Vol 29 (5) ◽  
pp. 603 ◽  
Author(s):  
B Singh ◽  
RJ Gilkes

The P sorption characteristics of 97 soils that are representative of the agricultural areas of Western Australia were described using Langmuir and Freundlich equations. The Langmuir P maximum (xm) ranged from 11 to 2132 �g g-1 soil and the Freundlich k coefficient ranged from 1 to 1681. Clay content, DCB Fe and Al, oxalate Fe and AL, and pyrophosphate Al were positively related to xm and k. By using stepwise regression analysis, the combination of DCB and oxalate-soluble A1 predicted more than 75% Of the variation in the P sorption coefficients. Reactive Al compounds may thus be responsible for much of the P sorption by these soils. Soil pH in 1 M NaF (pH 8.2), which is normally used for the detection of allophanic material, was strongly related to the P sorption coefficients and might therefore be used as a quick test for predicting the P sorption capacity of soils.


Sign in / Sign up

Export Citation Format

Share Document