Effect of soil type and rainfall on dicyandiamide concentrations in drainage from lysimeters

Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 67 ◽  
Author(s):  
Mark Shepherd ◽  
Justin Wyatt ◽  
Brendon Welten

The nitrification inhibitor dicyandiamide (DCD) is mobile in drainage water, which has implications for its effectiveness in reducing nitrate leaching from urine patches. Lysimeters had been used to investigate the effect of soil type (clay, silt loam, or sandy loam) and precipitation (target ~1140 or 2280 mm/year) on the effectiveness of DCD to decrease nitrate leaching. This paper reports the associated effects on DCD in drainage water. DCD was applied in May and July at a rate of 10 kg/ha, and natural rainfall was supplemented with irrigation to ensure that the target precipitation was achieved for each treatment. The experiment was undertaken twice. The pattern of DCD concentrations in drainage water suggested that movement of DCD in the silt loam and sandy loam soils was typical of convective–dispersive flow. Although there was some preferential flow of DCD from the soil surface to depth in the clay soil, DCD concentration profiles suggested that the main transport mechanism was also by convective–dispersive flow. There were significant soil-type and precipitation effects on DCD leaching (P < 0.05). The soil-type effect could be attributed to differences in drainage volume between soils. Combining data from the two experimental years, DCD leaching losses ranged from 12 to 46% of applied, with annual drainage in the range 422–1292 mm. DCD was detected in drainage up to 15 months after application, demonstrating the longevity of the compound. The experiment demonstrates that leaching of DCD on all of the soil types tested can be substantial under high rainfall. This is likely to have implications for the effectiveness of DCD to decrease nitrogen losses from urine patches under such rainfall conditions, as well as being a source of nitrogen itself.

1965 ◽  
Vol 64 (3) ◽  
pp. 299-303 ◽  
Author(s):  
J. K. R. Gasser

Ammonium sulphate alone and treated with the nitrification inhibitor 2-chloro-6-(trichloromethyl)- pyridine, at rates equivalent to 1 and 2% of the weight of N applied, was applied to sandy- and clay-loam soils. Ammonium sulphate was given in November 1962, and soil samples, taken in spring 1963, down to 36 in. on the sandy-loam and 18 in. on the clay-loam, were analysed. When the ammonium sulphate was broadcast on the soil surface, 2% of the inhibitor, inhibited nitrification of the ammonium-N more than 1%, but when it was placed in the soil both rates were equally effective.


Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 428-433 ◽  
Author(s):  
Andrew J. Goetz ◽  
Robert H. Walker ◽  
Glenn Wehtje ◽  
Ben F. Hajek

Soil thin-layer chromatography and a soil solution technique were used to evaluate chlorimuron adsorption and mobility in five Alabama soils. The order of adsorption was atrazine > metribuzin > chlorimuron; mobility was chlorimuron > metribuzin > atrazine. The order of adsorption of chlorimuron in the five soils was Sumter clay > Eutaw clay > Lucedale fine sandy loam > Decatur silt loam > Dothan sandy loam, and Rfvalues were 0.63, 0.73, 0.69, 0.76, and 0.80, respectively. Chlorimuron mobility and adsorption were not highly correlated to any one soil type. Adsorption of all herbicides was inversely related to soil pH. Maximum chlorimuron adsorption in the Hiwassee loam was attributed to the high hematite and gibbsite content of the soil.


Soil Research ◽  
2008 ◽  
Vol 46 (7) ◽  
pp. 517 ◽  
Author(s):  
Jagrati Singh ◽  
S. Saggar ◽  
D. L. Giltrap ◽  
Nanthi S. Bolan

The objective of this work was to study the degradation kinetics of a nitrification inhibitor (NI), dicyandiamide (DCD), and evaluate its effectiveness in reducing nitrous oxide (N2O) emissions in different types of soils. Three soils contrasting in texture, mineralogy, and organic carbon (C) content were incubated alone (control) or with urine at 600 mg N/kg soil with 3 levels of DCD (0, 10, and 20 mg/kg). Emissions of N2O and carbon dioxide (CO2) were measured during the 58-day incubation. Simultaneously, subsamples were collected periodically from the incubating soils (40-day incubation) and the amounts of DCD, NH4+, and NO3− were determined. Our results showed that the half-life of DCD in these laboratory incubating soils at 25°C was 6–15 days and was longer at the higher rate of DCD application. Of the 3 soils studied, DCD degradation was fastest in the brown loam allophanic soil (Typic orthic allophanic) and slowest in the silt loam non-allophanic soil (Argillic-fragic Perch-gley Pallic). The differences in DCD degradation among these soils can be attributed to the differences in the adsorption of DCD and in the microbial activities of the soils. Among the 3 soils the highest reduction in N2O emissions with DCD from the urine application was measured in the non-allophanic silt loam soil followed by non-allophanic sandy loam soil and allophanic brown loam soil. There was no adverse impact of DCD application on soil respiratory activity or microbial biomass.


Weed Science ◽  
1993 ◽  
Vol 41 (2) ◽  
pp. 251-261 ◽  
Author(s):  
Lars F. Bergström ◽  
Nicholas J. Jarvis

A leaching test conducted in field lysimeters for the purpose of pesticide registration is evaluated, particularly in terms of factors such as the effects of soil type, variability in leaching between replicate lysimeters, and simulation of worst-case scenarios. Two herbicides, dichlorprop and bentazon, were chosen as test compounds due to their documented high mobility in laboratory tests. Four different soil types (sand, loam, clay, peat) and two irrigation treatments were included. Both herbicides were applied at rates representing normal doses (1.6 and 0.6 kg ai ha−1of dichlorprop and bentazon, respectively).36Cl was also applied to sand and clay lysimeters to follow the pattern of water movement. Leaching of dichlorprop for the varying soil type/treatment combinations ranged from 0.02 to 1.8% of the amount applied. Leaching losses of bentazon reached up to 0.07% of that applied. Leaching of both herbicides was greater mostly in clay monoliths than in sand monoliths, which was explained in terms of macropore flow. A more effective macropore flow was also suggested to be the main reason why more dichlorprop leached in clay and peat monoliths treated with a small water input. Detectable, and in some cases large, concentrations of dichlorprop were found in the first drainage water in early autumn in all soil/treatment combinations, indicating the occurrence of preferential flow in all soils tested, including sand. A rapid breakthrough of36Cl was also found in clay and low-irrigation input sand, providing additional confirmation of the role of preferential flow processes in these soils. It is concluded that field mobility tests for pesticide registration are a necessary complement to measurements of physical/chemical properties of a compound and that these should be performed in a range of soil types, including at least one structured soil. Other factors identified to be of importance when evaluating lysimeter studies such as this were the analytical detection limits of the pesticides and the need for replication.


Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 146-152 ◽  
Author(s):  
L. D. Porter ◽  
N. Dasgupta ◽  
D. A. Johnson

The effects of tuber depth, soil type, and soil moisture on potato tuber infection due to Phytophthora infestans were assessed under greenhouse conditions in soil contained in large pots. Healthy tubers were used to assess infection and were either hand buried in soil at specific depths or naturally formed from potato plants growing in the soil. A spore suspension of P. infestans was chilled to induce zoospore formation and a suspension of resulting zoospores and sporangia were applied to the soil. Soil depth at which tubers became infected was used to determine the extent of spore movement in the soils. Tuber infection significantly decreased with increasing soil depth. Most infected tubers were found at the surface of soil; infection was rare on tubers at 5 cm or deeper in the soil. Amount of tuber infection varied among soil types. Significantly less tuber infection occurred in a Shano silt loam than in medium and fine sands. Only tubers on the soil surface were infected in the Shano silt loam. Depth in soil at which tubers became infected did not differ significantly among Quincy fine sand, Quincy loamy fine sand, and Quincy medium sand. Increased soil moisture did not significantly increase the soil depth at which tuber infection occurred, regardless of the soil type.


2006 ◽  
Vol 86 (3) ◽  
pp. 533-544 ◽  
Author(s):  
Edward Topp, John Hendel ◽  
Zexun Lu ◽  
Ralph Chapman

Caffeine (1,3,7-trimethylxanthine) could represent a useful marker of contamination of effluent from agricultural land receiving biosolids. The persistence characteristics of caffeine in three agricultural soils was investigated. In laboratory microcosms of moist soil incubated at 30°C, [8-ring-14C]-caffeine was rapidly and thoroughly mineralized to 14CO2 in a sandy loam and a loam soil, and less rapidly in a silt loam soil. Caffeine mineralization was very responsive to soil temperature and moisture. Mineralization of caffeine was hastened by the addition of liquid municipal biosolids (LMB) from three municipal sewage-treatment plants (MSTPs) that aerate this material. In contrast, LMB from three MSTPs that did not aerobically digest their LMB did not accelerate caffeine mineralization. Autoclaved LMB had no effect on caffeine dissipation. Abacterium, designated Pseudomonas sp. Strain TH1, was isolated from aerated LMB. The bacterium first demethylated caffeine to 3,7-dimethylxanthine, and then mineralized the molecule. Inoculation of Pseudomonas sp. Strain TH1 into soil hastened mineralization of [8-ring-14C]-caffeine. In summary, caffeine was more stable in a silt loam soil than a sandy loam or loam soil, but biodegradation in all three soils was quite uniform upon the addition of caffeine-degrading bacteria or aerated biosolids. We suggest that caffeine would likely not be a suitably conservative chemical marker for detecting chronic contamination of agricultural drainage water following fertilization wit hLMB. Aerobic digestion of LMB promotes the enrichment of caffeine-degrading microorganisms. Key words: Caffeine biodegradation, biosolids chemical marker, biosolids organic contaminant, water quality


1998 ◽  
Vol 8 (4) ◽  
pp. 573-575 ◽  
Author(s):  
B.D. McCraw ◽  
M.W. Smith

Taproots of 2-year-old `Apache' seedling pecan [Carya illinoensis (Wang)] trees were pruned to 1 ft (30 cm), 2 ft (60 cm), or 3 ft (90 cm) in combination with wounding treatments consisting of no wounding, scraping through pericycle tissue on one or two sides of the taproot, or longitudinally splitting the taproot for about half its length. The trees were planted in a Port silt loam soil and a Teller sandy loam soil and grown without irrigation. At the end of the first and second growing seasons, top growth was measured, trees were dug and root system regrowth was evaluated. Tree root weight and number of roots per tree decreased with increasing taproot length.


1998 ◽  
Vol 8 (1) ◽  
pp. 74-77
Author(s):  
Regina P. Bracy ◽  
Richard L. Parish

Stands of brassica crops obtained with precision seeders are sometimes inadequate or nonuniform. Although several types of covering devices and presswheels are available from precision seeder manufacturers, the effects of covering devices and presswheels on plant emergence of direct-seeded Brassica crops have not been determined. In Spring and Fall 1996, six crops of mustard [Brassica juncea (L.) Czerniak] and four crops of cabbage (Brassica oleracea L. capitata group) were direct seeded with a precision belt seeder using four covering devices and four rear presswheels. All of the covering devices and presswheels evaluated were adequate for direct seeding mustard and cabbage under the soil moisture conditions and soil type (silt loam or fine sandy loam) found in these experiments. Although poor stands were obtained with all seed covering devices and presswheels when 7.8 inches (199 mm) of rain occurred within 3 days of planting, plant stand of cabbage was greater when the paired arm device was used than with drag-type or no covering devices.


Weed Science ◽  
1977 ◽  
Vol 25 (6) ◽  
pp. 515-520 ◽  
Author(s):  
A.E. Hiltbold ◽  
G.A. Buchanan

Persistence of 1.12, 2.24, and 3.36 kg/ha of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] applied preemergence to corn (Zea maysL. ‘Funk's 4761′) was determined in three soils, each providing a range of pH from 5 to 7. Samples of surface soil from each plot were collected at intervals after atrazine application until there was no evidence of phytotoxicity to oat (Avena sativaL. ‘Florida 501′) in bioassay. Persistence (Y50) was defined as the number of days following atrazine application until bioassay indicated 50% relative growth of oats (no atrazine = 100% growth). This period ranged from 24 to 178 days, depending upon soil type, pH, and atrazine rate. Persistence of atrazine increased with increasing soil pH. The effect of soil pH was essentially the same at each atrazine rate and did not vary appreciably with years in a given soil. In McLaurin sandy loam, atrazine persisted 8 to 9 days longer with each unit increase in soil pH. In Hartsells fine sandy loam and Decatur silt loam, atrazine persistence increased 9 to 13 days and 29 days, respectively, with each unit pH.


Weed Science ◽  
1971 ◽  
Vol 19 (1) ◽  
pp. 6-10 ◽  
Author(s):  
R. E. Talbert ◽  
D. R. Smith ◽  
R. E. Frans

In leaching studies utilizing slotted columns of soil and redroot pigweed (Amaranthus retroflexusL.) bioassay, 2,4-bis(isopropylamino)-6-methylmercapto-s-triazine(prometryne was leached to a greater depth in the coarse-textured sandy soils than in the fine-textured clay soils. There was little correlation between the depths of leaching and the amount of water used to leach the herbicide. Prometryne formulated as an emulsifiable concentrate was leached to a greater depth than the wettable powder and the granules. The14C-pro-metryne was much more strongly adsorbed to a clay soil than to loam and silt loam soils. Volatility studies, using cotton (Gossypium hirsutumL.) plants to assay for vapor injury, showed the vapor loss of prometryne was greater from a metal surface than from a soil surface. Injury from prometryne vapors was greater with silt loam and sandy loam soils than clay soils. Cotton plants exposed 1 week after emergence were more severely injured by prometryne vapors than cotton plants exposed at emergence or 2 and 3 weeks after emergence. The vapor injury from prometryne formulated as a wettable powder or an emulsifiable concentrate was greater from granules. Prometryne vapor injury was increased as soil moisture and temperature was increased. Vapor injury to leaves of cotton was characterized by interveinal chlorosis while injury from root uptake was characterized by veinal chlorosis.


Sign in / Sign up

Export Citation Format

Share Document