A variable property heat transfer model for predicting soil temperature profiles during simulated wildland fire conditions

2008 ◽  
Vol 17 (2) ◽  
pp. 205 ◽  
Author(s):  
Ebenezer K. Enninful ◽  
David A. Torvi

A numerical model of heat transfer in dry soil was developed to predict temperatures and depth of lethal heat penetration during cone calorimeter tests used to simulate wildland fire exposures. The model was used to compare predictions made using constant and temperature-dependent thermal properties with experimental results for samples of dry sand exposed to heat fluxes of 25, 50 and 75 kW m–2. Depths of lethal heat penetration predicted using temperature-dependent properties were within 2 to 10% of the values determined using measured temperatures, while predictions made using constant properties were within 10 to 21% of the experimental values. In both cases, predictions made by the model were within the 1-cm accuracy with which the depth of seeds and plant shoots in the soil can be determined in practice. The model generally over-predicted the depth of lethal heat penetration in dry or moist soil when temperature-dependent properties were used, and over-predicted the depth of lethal heat penetration in soils with a moisture content of greater than 10% if constant thermal properties were used.

Author(s):  
Bumsoo Han ◽  
John C. Bischof

Biological materials in both cryopreservation and cryosurgery are composed of various chemicals and experience a wide range of temperature change. Therefore, their thermal properties including specific heat, latent heat (including water/ice and eutectic phase change) and thermal conductivity are expected to change significantly during freezing/thawing. The effects of thermal properties on heat transfer in cryopreservation/cryosurgery were studied experimentally and numerically. Thermal properties of various biological aqueous solutions were measured over a wide temperature range (−150~30°C). To estimate the effect of thermal property changes on the heat transfer, numerical simulations of both cryopreservation (cooled from outside) and cryosurgery (cooled from inside) geometries were performed with constant and temperature-dependent properties. The results show that the constant-property case significantly under-predicts the heat transfer over the temperature-dependent-property case regardless of the geometry.


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


Author(s):  
Justin Lapp ◽  
Wojciech Lipiński

A transient heat transfer model is developed for a solar reactor prototype for H2O and CO2 splitting via two-step non-stoichiometric ceria cycling. Counter-rotating cylinders of reactive and inert materials cycling between high and low temperature zones permit continuous operation and heat recovery. To guide the reactor design a transient three-dimensional heat transfer model is developed based on transient energy conservation, accounting for conduction, convection, radiation, and chemical reactions. The model domain includes the rotating cylinders, a solar receiver cavity, and insulated reactor body. Radiative heat transfer is analyzed using a combination of the Monte Carlo method, Rosseland diffusion approximation, and the net radiation method. Quasi-steady state distributions of temperatures, heat fluxes, and the non-stoichiometric coefficient are reported. Ceria cycles between temperatures of 1708 K and 1376 K. A heat recovery effectiveness of 28% and solar-to-fuel efficiency of 5.2% are predicted for an unoptimized reactor design.


2017 ◽  
Vol 14 (2) ◽  
pp. 93-100
Author(s):  
A.B.M. Mainul Bari ◽  
Saeed Rubaiee ◽  
Anas Ahmed ◽  
AKM Masud

In modern days silicon is being extensively used in making electronic semiconductor-based chips and IC’s. In this research, the change in different thermodynamic properties of silicon like lattice heat capacity, molar enthalpy and Debye temperature at constant pressure, with the change in temperature, has been investigated by using molecular dynamics (MD) simulation method. Knowing silicon’ thermodynamic functions are quite important, because many electronic companies are nowadays trying a lot to reduce the heat generated by their semiconductor chips as excessive heating of the chip not only warms up the device quickly but also reduces the chip life. The results obtained from this simulation help engineers to design electronic chips more efficiently. For simulation “Accelrys Materials Studio” (Version 5.0) software has been used. The simulation was run for silicon FCC diamond structured cell. The analysis tool used in the simulation is known as CASTEP (Cambridge Sequential Total Energy Package). This tool is specialized for performing molecular level thermodynamic analysis to generate data and graphs for the change in different temperature dependent properties of the molecular system. The interaction between silicon atoms was expressed by the Kohn-Sham potential and MD calculation was conducted on crystalline state of silicon at temperatures between 0 and 1000 K. Here, density function theory (DFT) based tool has been used to derive density of state relations. Results obtained by the simulation were compared with published experimental values and it was found that the simulation results were close to the experimental values.


1981 ◽  
Vol 103 (4) ◽  
pp. 745-752 ◽  
Author(s):  
M. Imber

Material thermal properties are temperature dependent, and this effect cannot be disregarded at elevated design temperatures. Based upon the principle of equivalent linearization, analytical solutions are developed for thermally symmetric planar solids. The solution method is, in turn, extended to a composite wall whose individual thermal conductivities are also temperature dependent. As a demonstration of the method’s accuracy several numerical examples are shown.


1971 ◽  
Vol 93 (4) ◽  
pp. 432-440 ◽  
Author(s):  
T. B. Swearingen ◽  
D. M. McEligot

The results of a numerical investigation of internal laminar heat transfer to a gas with temperature-dependent properties are reported. In this investigation the authors obtained numerical solutions to the coupled partial differential equations of continuity, energy, momentum, and integral continuity describing the two-dimensional flow of perfect gas between heated parallel plates. A sequence of numerical solutions was obtained for the case of constant wall heat flux with a fully developed velocity profile at the start of the heated section and pure forced convection. The results may be summarized by Nu=Nuconst.prop.+0.024(Q+)0.3(Gzm)0.75f·Rem=24(Twall/Tbulk) where the subscript “m” refers to properties evaluated at the local mixed-mean (or bulk) temperature.


1999 ◽  
Vol 122 (2) ◽  
pp. 366-374 ◽  
Author(s):  
Tao Guo ◽  
Ting Wang ◽  
J. Leo Gaddis

Experimental studies on mist/steam cooling in a heated horizontal tube have been performed. Wall temperature distributions have been measured under various main steam flow rates, droplet mass ratios, and wall heat fluxes. Generally, the heat transfer performance of steam can be significantly improved by adding mist into the main flow. An average enhancement of 100 percent with the highest local heat transfer enhancement of 200 percent is achieved with 5 percent mist. When the test section is mildly heated, an interesting wall temperature distribution is observed: The wall temperature increases first, then decreases, and finally increases again. A three-stage heat transfer model with transition boiling, unstable liquid fragment evaporation, and dry-wall mist cooling has been proposed and has shown some success in predicting the wall temperature of the mist/steam flow. The PDPA measurements have facilitated better understanding and interpreting of the droplet dynamics and heat transfer mechanisms. Furthermore, this study has shed light on how to generate appropriate droplet sizes to achieve effective droplet transportation, and has shown that it is promising to extend present results to a higher temperature and higher pressure environment. [S0889-504X(00)02502-2]


Author(s):  
Chidambaram Narayanan ◽  
Siju Thomas ◽  
Djamel Lakehal

This paper presents results of numerical simulations of various processes that demonstrate phase change heat transfer at high heat fluxes using the level-set method. The model used for the purpose has been first validated for the growth of an evaporating bubble in infinite medium, and fim boiling in 2D and 3D. It has then been applied to simulate the nucleation and departure of a single bubble from a solid body subject to conductive heat transfer. Unlike our previous investigations where phase change induced evaporation rate was incorporated like a sub-grid scale heat transfer model applied to the triple contact line, the present work reports simulations with direct phase change modelling by integrating energy fluxes at the interface. The effect of the conductive heat transfer in the solid from which the bubble departs is also taken into account. Comparison with visual images suggests that accounting for conjugate heat transfer is important to capturing micro-hydrodynamics in nucleate boiling, at least qualitatively.


Sign in / Sign up

Export Citation Format

Share Document