Bare soil and rill formation following wildfires, fuel reduction treatments, and pine plantations in the southern Sierra Nevada, California, USA

2010 ◽  
Vol 19 (4) ◽  
pp. 478 ◽  
Author(s):  
Neil H. Berg ◽  
David L. Azuma

Accelerated erosion commonly occurs after wildfires on forested lands. As burned areas recover, erosion returns towards prefire rates depending on many site-specific characteristics, including fire severity, vegetation type, soil type and climate. In some areas, erosion recovery can be rapid, particularly where revegetation is quick. Erosion recovery is less well understood for many fuel load reduction treatments. The rate of post-disturbance erosion recovery affects management options for forested lands, particularly when considering the combined ramifications of multiple disturbances on resource recovery rates (i.e. cumulative watershed effects). Measurements of percentage bare soil and rilling on over 600 plots in the southern Sierra Nevada with slopes less than 75% and within 1 km of roads were made between 2004 and 2006. Results suggest that after high-, moderate- or low-severity wildfire, rilling was seldom evident more than 4 years after fire. Percentage bare soil generally did not differ significantly between reference plots and wildfire plots greater than 6 years old. Little rilling was evident after treatment with a variety of fuel reduction techniques, including burning of machine- and hand-piled fuel, thinning, mastication, and crushing. Percentage bare soil at the fuel load reduction treatment plots also did not differ significantly from reference conditions. Percentage bare soil at pine plantation plots was noticeably higher than at reference sites.

Birds ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 395-403
Author(s):  
Chad T. Hanson

The California spotted owl is an imperiled species that selects mature conifer forests for nesting and roosting while actively foraging in the “snag forest habitat” created when fire or drought kills most of the trees in patches. Federal agencies believe there are excess surface fuels in both of these habitat conditions in many of California’s forests due to fuel accumulation from decades of fire suppression and recent drought-related tree mortality. Accordingly, agencies such as the U.S. Forest Service are implementing widespread logging in spotted owl territories. While they acknowledge habitat degradation from such logging, and risks to the conservation of declining spotted owl populations, agencies hypothesize that such active forest management equates to effective fuel reduction that is needed to curb fire severity for the overall benefit of this at-risk species. In an initial investigation, I analyzed this issue in a large 2020 fire, the Creek Fire (153,738 ha), in the southern Sierra Nevada mountains of California. I found that pre-fire snag density was not correlated with burn severity. I also found that more intensive forest management was correlated to higher fire severity. My results suggest the fuel reduction approach is not justified and provide indirect evidence that such management represents a threat to spotted owls.


2015 ◽  
Vol 24 (4) ◽  
pp. 484 ◽  
Author(s):  
Jamie M. Lydersen ◽  
Brandon M. Collins ◽  
Eric E. Knapp ◽  
Gary B. Roller ◽  
Scott Stephens

Although knowledge of surface fuel loads is critical for evaluating potential fire behaviour and effects, their inherent variability makes these difficult to quantify. Several studies relate fuel loads to vegetation type, topography and spectral imaging, but little work has been done examining relationships between forest overstorey variables and surface fuel characteristics on a small scale (<0.05 ha). Within-stand differences in structure and composition would be expected to influence fuel bed characteristics, and thus affect fire behaviour and effects. We used intensive tree and fuel measurements in a fire-excluded Sierra Nevada mixed conifer forest to assess relationships and build predictive models for loads of duff, litter and four size classes of downed woody fuels to overstorey structure and composition. Overstorey variables explained a significant but somewhat small percentage of variation in fuel load, with marginal R2 values for predictive models ranging from 0.16 to 0.29. Canopy cover was a relatively important predictor for all fuel components, although relationships varied with tree species. White fir abundance had a positive relationship with total fine woody fuel load. Greater pine abundance was associated with lower load of fine woody fuels and greater load of litter. Duff load was positively associated with total basal area and negatively associated with oak abundance. Knowledge of relationships contributing to within-stand variation in fuel loads can increase our understanding of fuel accumulation and improve our ability to anticipate fine-scale variability in fire behaviour and effects in heterogeneous mixed species stands.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Jamie M. Lydersen ◽  
Brandon M. Collins ◽  
Michelle Coppoletta ◽  
Melissa R. Jaffe ◽  
Hudson Northrop ◽  
...  

Abstract Background High-severity fire in forested landscapes often produces a post-fire condition of high shrub cover and large loads of dead wood. Given the increasing patch size of high-severity fire and the tendency for these areas to reburn at high severity in subsequent wildfires, post-fire management often targets restoration of these areas. However, these areas are challenging to manage, in part due to limited knowledge of post-fire fuel dynamics over space and time and uncertainties in how specific fuel components such as snags and logs influence future fire severity. In this study, we used high-resolution aerial imagery collected nine years after a wildfire to measure snags, logs, and shrub cover within high-severity patches, and to assess how fuel development influenced reburn severity in a subsequent wildfire. Results The abundance of snags, logs, and shrubs following high-severity fire varied with elevation and slope steepness; however, generalized additive models explained only 6 to 21% of their variation over the post-fire landscape. High densities of both snags and logs were associated with high reburn severity in a subsequent fire, while shrub cover had a marginally insignificant (P = 0.0515) effect on subsequent fire severity. Conclusions Our results demonstrate that high levels of large dead wood, which is often not considered in fire behavior modeling, corresponded with repeated high-severity fire effects. Future research should leverage the increasing availability of high-resolution imagery to improve our understanding of fuel load patterns in space and time and how they may impact landscape resilience to facilitate management planning for post-fire forest landscapes.


2011 ◽  
Vol 41 (4) ◽  
pp. 810-821 ◽  
Author(s):  
Janet Franklin ◽  
Erin Bergman

We examined establishment patterns of pines following a large, severe wildfire in the Peninsular Ranges of southern California, USA. The October 2003 Cedar Fire caused 98% pine mortality. In this study, we asked (i) where did seedlings establish and survive in formerly forested areas of the Cuyamaca Mountains 5 years following the high severity fire and (ii) what factors were associated with the spatial pattern of seedling establishment? Factors analyzed were pre-fire vegetation type, fire severity, post-fire vegetation characteristics, topography (slope, aspect, and elevation), and mapped soil type. We used a unique belt-transect survey method following the existing trail network that resulted in a representative sample of post-fire environments. Almost 1300 100 m × 20 m quadrats were searched in 2008–2009, one third of which supported juvenile pines. Regeneration primarily consisted of Coulter pine ( Pinus coulteri D. Don), a weakly serotinous pine that was establishing at densities of 5–2320/ha on half of the quadrats where it had occurred pre-fire. Pinus coulteri regenerated in areas burned at high severity where pre-fire pine cover was high and its abundance was positively associated with higher elevation and cover of bare soil. In contrast, minimal regeneration of nonserotinous pines occurred patchily in areas that were not severely burned.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 150
Author(s):  
Lance Jay Roberts ◽  
Ryan Burnett ◽  
Alissa Fogg

Silvicultural treatments, fire, and insect outbreaks are the primary disturbance events currently affecting forests in the Sierra Nevada Mountains of California, a region where plants and wildlife are highly adapted to a frequent-fire disturbance regime that has been suppressed for decades. Although the effects of both fire and silviculture on wildlife have been studied by many, there are few studies that directly compare their long-term effects on wildlife communities. We conducted avian point counts from 2010 to 2019 at 1987 in situ field survey locations across eight national forests and collected fire and silvicultural treatment data from 1987 to 2016, resulting in a 20-year post-disturbance chronosequence. We evaluated two categories of fire severity in comparison to silvicultural management (largely pre-commercial and commercial thinning treatments) as well as undisturbed locations to model their influences on abundances of 71 breeding bird species. More species (48% of the community) reached peak abundance at moderate-high-severity-fire locations than at low-severity fire (8%), silvicultural management (16%), or undisturbed (13%) locations. Total community abundance was highest in undisturbed dense forests as well as in the first few years after silvicultural management and lowest in the first few years after moderate-high-severity fire, then abundance in all types of disturbed habitats was similar by 10 years after disturbance. Even though the total community abundance was relatively low in moderate-high-severity-fire habitats, species diversity was the highest. Moderate-high-severity fire supported a unique portion of the avian community, while low-severity fire and silvicultural management were relatively similar. We conclude that a significant portion of the bird community in the Sierra Nevada region is dependent on moderate-high-severity fire and thus recommend that a prescribed and managed wildfire program that incorporates a variety of fire effects will best maintain biodiversity in this region.


2009 ◽  
Vol 18 (7) ◽  
pp. 857 ◽  
Author(s):  
Chad T. Hanson ◽  
Malcolm P. North

With growing debate over the impacts of post-fire salvage logging in conifer forests of the western USA, managers need accurate assessments of tree survival when significant proportions of the crown have been scorched. The accuracy of fire severity measurements will be affected if trees that initially appear to be fire-killed prove to be viable after longer observation. Our goal was to quantify the extent to which three common Sierra Nevada conifer species may ‘flush’ (produce new foliage in the year following a fire from scorched portions of the crown) and survive after fire, and to identify tree or burn characteristics associated with survival. We found that, among ponderosa pines (Pinus ponderosa Dougl. ex. Laws) and Jeffrey pines (Pinus jeffreyi Grev. & Balf) with 100% initial crown scorch (no green foliage following the fire), the majority of mature trees flushed, and survived. Red fir (Abies magnifica A. Murr.) with high crown scorch (mean = 90%) also flushed, and most large trees survived. Our results indicate that, if flushing is not taken into account, fire severity assessments will tend to overestimate mortality and post-fire salvage could remove many large trees that appear dead but are not.


2017 ◽  
Vol 8 (1) ◽  
pp. 55-62
Author(s):  
Lailan Syaufina ◽  
Vera Linda Purba

Forest fire is one of the problem in forest management. The objectives of the study was to measure the forest fire severity based on soil physical and chemical properties. The forest fire effects were assessed using fire severity method and forest health monitoring plot. The study indicated that the burned areas at BKPH Parung Panjang after two years included in low fire severity. The site properties and growth performance analysis showed that the fire has only affected on pH, Mg and tree diameter significantly, whereas the other parameters such as bulk density, P, N, Na, K, Ca and height were not significantly affected. In addition, both burned and unburned areas are classified as in health condition.Key words : fire severity, forest health monitoring, growth performance, site properties


2011 ◽  
Vol 20 (4) ◽  
pp. 540 ◽  
Author(s):  
T. G. O'Connor ◽  
C. M. Mulqueeny ◽  
P. S. Goodman

Fire pattern is predicted to vary across an African savanna in accordance with spatial variation in rainfall through its effects on fuel production, vegetation type (on account of differences in fuel load and in flammability), and distribution of herbivores (because of their effects on fuel load). These predictions were examined for the 23 651-ha Mkuzi Game Reserve, KwaZulu-Natal, based on a 37-year data set. Fire return period varied from no occurrence to a fire every 1.76 years. Approximately 75% of the reserve experienced a fire approximately every 5 years, 25% every 4.1–2.2 years and less than 1% every 2 years on average. Fire return period decreased in relation to an increase in mean annual rainfall. For terrestrial vegetation types, median fire return periods decreased with increasing herbaceous biomass, from forest that did not burn to grasslands that burnt every 2.64 years. Fire was absent from some permanent wetlands but seasonal wetlands burnt every 5.29 years. Grazer biomass above 0.5 animal units ha–1 had a limiting influence on the maximum fire frequency of fire-prone vegetation types. The primary determinant of long-term spatial fire patterns is thus fuel load as determined by mean rainfall, vegetation type, and the effects of grazing herbivores.


2020 ◽  
Vol 29 (7) ◽  
pp. 611
Author(s):  
Breeanne K. Jackson ◽  
S. Mažeika P. Sullivan

Fires are a common feature of many landscapes, with numerous and complex ecological consequences. In stream ecosystems, fire can strongly influence fluvial geomorphic characteristics and riparian vegetation, which are structural components of stream–riparian ecosystems that contribute to biodiversity and ecosystem function. However, the effects of fire severity on stream–riparian ecosystems in California’s Sierra Nevada region (USA) are not well described, yet critical for effectively informing fire management and policy. At 12 stream reaches paired by fire severity (one high-severity burned, one low-severity burned), no significant differences were found in riparian plant community cover and composition or stream geomorphic characteristics 2–15 years following wildfire. In addition, minimal changes in riparian vegetation and stream geomorphic properties were observed in the first summer following the extensive and severe Rim Fire. However, an upstream-to-downstream influence of multiple fire occurrences was observed over the previous 81 years within each catchment on stream geomorphic metrics, including sediment size, embeddedness and channel geometry, at our study reaches. The inconsistent effects of wildfire on stream–riparian vegetation and geomorphic characteristics over space and time may be related to time since fire and precipitation.


Sign in / Sign up

Export Citation Format

Share Document