Effects of trap position, trap history, microhabitat and season on capture probabilities of small mammals in a wet eucalypt forest

2005 ◽  
Vol 32 (8) ◽  
pp. 657 ◽  
Author(s):  
R. B. Cunningham ◽  
D. B. Lindenmayer ◽  
C. MacGregor ◽  
S. Barry ◽  
A. Welsh

In this study, we use data drawn from a series of trapping events on four 0.5-ha trapping grids surveyed in the wet eucalypt forests of central Victoria, south-eastern Australia, to identify relationships between capture probabilities and several factors of interest for three species of small mammals that are common throughout the forests of this region: the agile antechinus (Antechinus agilis), the dusky antechinus (Antechinus swainsonii) and the bush rat (Rattus fuscipes). The design of our study – four regular trapping grids – generated spatio-temporal data with binary responses and many covariates. We used powerful and relatively new statistical methodology to deal with the spatio-temporal dependence patterns in the data – analytical problems that are common in trapping data such as these modelled here. Although A. agilis, A. swainsonii and R. fuscipes are among the best studied mammals in Australia, our data analysis produced new perspectives on their probability of being captured. In particular, we quantified how capture probability is affected by trap position within a trapping grid, day of capture in a sequence of trapping days, history of trap occupancy over time by different species and sexes of those species, time of the year or season, and microhabitat attributes. Our insights are discussed in terms of their consequences for trapping protocols that might be applied in the field.

2009 ◽  
Vol 36 (2) ◽  
pp. 143 ◽  
Author(s):  
Harry F. Recher ◽  
Daniel Lunney ◽  
Alison Matthews

This paper reports a study of ground-dwelling, small mammals in coastal eucalypt forest in south-eastern Australia from 1970 through 2005. During this time, the study area burnt in an intense fire in December 1972 and was partially burnt in November 1980. Both fires were associated with prolonged drought. The mammals studied comprised two dasyurid marsupials, Antechinus agilis and A. swainsonii, two native murid rodents, Rattus fuscipes and R. lutreolus, and the introduced house mouse Mus musculus. After intensive sampling throughout the year from 1970 through 1972 to establish basic ecological and population parameters of the small mammal community, populations were sampled annually during late autumn and early winter before the onset of breeding. There were marked differences in the annual (autumn/winter) abundances of all species; numbers of A. agilis ranged from 4 to 142 individuals; A. swainsonii 0 to 43; R. fuscipes 4 to 54; R. lutreolus 0 to 11; M. musculus 0 to 23. Following the 1972 fire, numbers fell to the lowest level recorded during the study and each population subsequently disappeared from the plot between the 1973 and 1974 winter censuses. The less intense 1980 fire did not lead to extirpation, but numbers of A. agilis, A. swainsonii and R. fuscipes declined as drought conditions persisted through 1983. R. lutreolus occurred consistently only following the fires, when a grassy ground vegetation favoured by this species developed. Similarly, M. musculus colonised within two years of the fires and persisted on the plot for 3–4 years before disappearing. Following the fires, populations of the omnivorous R. fuscipes recovered first followed by the scansorial, insectivorous A. agilis and last by the fossorial, insectivorous A. swainsonii. Two primary conclusions emerged from this study. First, the intense fire of 1972 did not kill all the animals immediately, but led to the disappearance of each species from the plot over 18 months. Thus, intense fire had a delayed but catastrophic impact on small ground-dwelling mammals. The fluctuations in population levels, covering more than an order of magnitude, demonstrate that factors other than fire, such as rainfall and drought, drive the population dynamics of these small mammals. As stability and recovery are not features of local populations, long-term studies of benchmark populations are necessary to manage forest biodiversity.


1979 ◽  
Vol 6 (2) ◽  
pp. 151 ◽  
Author(s):  
GR Friend

Before, during and after a clearing operation for pine plantation establishment, small mammals were trapped on ridges which were to be cleared of all vegetation, and in adjacent gullies which were to be permanently retained under native forest. Rattus fuscipes was the most abundant native species on all grids throughout the study, while R. lutreolus, Antechinus stuartii and A. swainsonii were in low abundance. Clearing in early summer, the breeding season in most of these species, resulted in an acceleration and accentuation of population turnover. Some juveniles and subadults may have moved from the ridges during clearing, while breeding adults remained and probably perished. Populations of R. fuscipes on ridge areas were drastically reduced by clearing and windrowing, but subadults recolonized the affected areas within 1-2 months. Results for the other three native species were inconclusive, due to the few individuals captured at any time during the study. The exotic species Mus musculus began to invade immediately following windrow burning.


2016 ◽  
Vol 25 (8) ◽  
pp. 831 ◽  
Author(s):  
Thomas A. Fairman ◽  
Craig R. Nitschke ◽  
Lauren T. Bennett

In temperate Australia, wildfires are predicted to be more frequent and severe under climate change. This could lead to marked changes in tree mortality and regeneration in the region’s predominant eucalypt forests, which have been burned repeatedly by extensive wildfires in the period 2003–14. Recent studies have applied alternative stable state models to select ‘fire sensitive’ forest types, but comparable models have not been rigorously examined in relation to the more extensive ‘fire tolerant’ forests in the region. We review the effects of increasing wildfire frequency on tree mortality and regeneration in temperate forests of Victoria, south-eastern Australia, based on the functional traits of the dominant eucalypts: those that are typically killed by wildfire to regenerate from seed (‘obligate seeders’) and those that mostly survive to resprout (‘resprouters’). In Victoria, over 4.3 million ha of eucalypt forest has been burned by wildfire in the last decade (2003–14), roughly equivalent to the cumulative area burned in the previous 50 years (1952–2002; 4.4 million ha). This increased wildfire activity has occurred regardless of several advancements in fire management, and has resulted in over 350 000 ha of eucalypt forest being burned twice or more by wildfire at short (≤11 year) intervals. Historical and recent evidence indicates that recurrent wildfires threaten the persistence of the ‘fire sensitive’ obligate seeder eucalypt forests, which can facilitate a shift to non-forest states if successive fires occur within the trees’ primary juvenile period (1–20 years). Our review also highlights potential for structural and state changes in the ‘fire tolerant’ resprouter forests, particularly if recurrent severe wildfires kill seedlings and increase tree mortality. We present conceptual models of state changes in temperate eucalypt forests with increasing wildfire frequency, and highlight knowledge gaps relating to the development and persistence of alternative states driven by changes in fire regimes.


1978 ◽  
Vol 5 (3) ◽  
pp. 305 ◽  
Author(s):  
GC Suckling ◽  
A Heislers

[See also FA 39, 2088] A 2-yr trapping study was made on (a) Rattus fuscipes, (b) Antechinus stuartii, (c) Mus musculus and (d) A. swainsonii in mature eucalypt forest, a narrow stream-side strip of eucalypt forest, and in 3 pine plantations, 8, 22 and 42 yr old. In each area (a) and (d) were largely and (c) always confined to dense native vegetation along streams, whilst (b) was more frequent along streams than on slopes. More animals were found away from streams in young pine plantations than in other forest types.


1996 ◽  
Vol 44 (3) ◽  
pp. 249 ◽  
Author(s):  
DJ Barrett ◽  
TJ Hatton ◽  
JE Ash ◽  
MC Ball

Temperate rainforests and eucalypt forests of coastal south-eastern Australia are distributed differentially with aspect. Rainforests, in which Ceratopetalum apetalum D.Don and Doryphora sassafras Endl. are the dominant tree species, occur on slopes of southerly aspect and along gully bottoms, whereas eucalypt forests, dominated by Eucalyptus maculata Hook., occur on upper slopes of northerly aspect and on ridge tops. Whether transpiration rates of trees differed across the rainforest-eucalypt forest boundary on north and south facing aspects was tested by measuring stem sap flow in trees in a single catchment during winter, summer and autumn. Differences in transpiration rate by trees in these stands were due to various combinations of biological and physical factors. Firstly, mean maximum transpiration rate per tree (crown area basis) was greater in rainforest on the gully bottom where deep soil water from down-slope drainage was greater than in eucalypt forest located upslope on the northern aspect. By contrast, there was no difference between maximum transpiration rates in rainforest and eucalypt forest on the southern aspect. Variation in transpiration rate between seasons was not related to variation in surface soil moisture content (< 0.35 m depth). Secondly, transpiration rates per unit crown area in rainforest at the gully bottom were associated with higher leaf area indices than upslope on the northern aspect. However, in rainforest upslope on the southern aspect, higher transpiration rates were not associated with higher leaf area indices. Thirdly, trees in eucalypt forest maintained similar sapwood moisture contents in summer as in winter and autumn, whereas sapwood moisture contents declined in rainforest trees in summer, suggesting that eucalypts had access to water from deep within the soil profile which was unavailable to more shallow rooting rainforest trees. Fourthly, higher modal and maximal sap velocities in eucalypt trees were partly due to wider xylem vessels and resulted in faster maximum sap flow and greater daily total water use in all seasons on both aspects than in rainforest species. Finally, as atmospheric demand for water increased from winter to summer, transpiration rates were mediated by stomata1 closure as indicated by lower average midday shoot conductance to water vapour during summer than other seasons. The interaction between microenvironment, which deteimines water availability, and physiological attsibutes, which determine tree water acquisition and use, may contribute to the differential distribution of rainforest and eucalypt forest with aspect in south-eastern Australia.


1990 ◽  
Vol 38 (3) ◽  
pp. 287 ◽  
Author(s):  
SJ Ward

Populations of Cercartetus nanus were investigated in three areas of Victoria: two areas of Banksia woodland at Wilsons Promontory National Park and an area of mixed eucalypt forest with an under- storey of B. spinulosa at Nar Nar Goon North, east of Melbourne. Most births occurred between November and March, but in areas where the dominant Banksia sp. flowered in winter they took place year-round. Most females produced two litters in a year, but some produced three. Males were reproductively active throughout the year. Litter sizes ranged from two to six, with a modal size of four. Pouch life lasted 30 days and weaning occurred at 65 days. Growth was rapid, young became independent immediately after weaning, and matured as early as 4.5-5.0 months old. Maximum longevity in the field was at least 4 years.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 450
Author(s):  
Luke Collins ◽  
Adele Hunter ◽  
Sarah McColl-Gausden ◽  
Trent D. Penman ◽  
Philip Zylstra

Research highlights—Feedbacks between fire severity, vegetation structure and ecosystem flammability are understudied in highly fire-tolerant forests that are dominated by epicormic resprouters. We examined the relationships between the severity of two overlapping fires in a resprouting eucalypt forest and the subsequent effect of fire severity on fuel structure. We found that the likelihood of a canopy fire was the highest in areas that had previously been exposed to a high level of canopy scorch or consumption. Fuel structure was sensitive to the time since the previous canopy fire, but not the number of canopy fires. Background and Objectives—Feedbacks between fire and vegetation may constrain or amplify the effect of climate change on future wildfire behaviour. Such feedbacks have been poorly studied in forests dominated by highly fire-tolerant epicormic resprouters. Here, we conducted a case study based on two overlapping fires within a eucalypt forest that was dominated by epicormic resprouters to examine (1) whether past wildfire severity affects future wildfire severity, and (2) how combinations of understorey fire and canopy fire within reburnt areas affect fuel properties. Materials and Methods—The study focused on ≈77,000 ha of forest in south-eastern Australia that was burnt by a wildfire in 2007 and reburnt in 2013. The study system was dominated by eucalyptus trees that can resprout epicormically following fires that substantially scorch or consume foliage in the canopy layer. We used satellite-derived mapping to assess whether the severity of the 2013 fire was affected by the severity of the 2007 fire. Five levels of fire severity were considered (lowest to highest): unburnt, low canopy scorch, moderate canopy scorch, high canopy scorch and canopy consumption. Field surveys were then used to assess whether combinations of understorey fire (<80% canopy scorch) and canopy fire (>90% canopy consumption) recorded over the 2007 and 2013 fires caused differences in fuel structure. Results—Reburn severity was influenced by antecedent fire severity under severe fire weather, with the likelihood of canopy-consuming fire increasing with increasing antecedent fire severity up to those classes causing a high degree of canopy disturbance (i.e., high canopy scorch or canopy consumption). The increased occurrence of canopy-consuming fire largely came at the expense of the moderate and high canopy scorch classes, suggesting that there was a shift from crown scorch to crown consumption. Antecedent fire severity had little effect on the severity patterns of the 2013 fire under nonsevere fire weather. Areas affected by canopy fire in 2007 and/or 2013 had greater vertical connectivity of fuels than sites that were reburnt by understorey fires, though we found no evidence that repeated canopy fires were having compounding effects on fuel structure. Conclusions—Our case study suggests that exposure to canopy-defoliating fires has the potential to increase the severity of subsequent fires in resprouting eucalypt forests in the short term. We propose that the increased vertical connectivity of fuels caused by resprouting and seedling recruitment were responsible for the elevated fire severity. The effect of antecedent fire severity on reburn severity will likely be constrained by a range of factors, such as fire weather.


Sign in / Sign up

Export Citation Format

Share Document