Hippocampus queenslandicus Horne, 2001 - a new seahorse species or yet another synonym?

2007 ◽  
Vol 55 (3) ◽  
pp. 139 ◽  
Author(s):  
Peter R. Teske ◽  
Sara A. Lourie ◽  
Conrad A. Matthee ◽  
David M. Green

During the past six years, 15 new seahorse species (Syngnathidae: Hippocampus) have been described on the basis of morphological characters. This approach is known to be problematic, and most species names in Hippocampus are now considered to be synonyms. Genetic methods have great potential to resolve the confused taxonomy of the genus, but none have yet been incorporated into species descriptions. In the present study, mitochondrial control region and cytochrome b DNA sequences, as well as morphological data from the recently described Queensland seahorse, Hippocampus queenslandicus Horne, 2001, were compared with corresponding data from closely related seahorse species to determine whether there is strong support for distinction of this taxon. The haplotypes of H. queenslandicus were nested among haplotypes belonging to two of the three major Southeast Asian lineages of H. spinosissimus Weber, 1913. Although incomplete lineage sorting characteristic of very recently diverged species cannot be ruled out, the genetic results suggest that H. queenslandicus is paraphyletic. Morphometric analysis further fails to provide strong support for the species status of H. queenslandicus. We conclude that support for the distinctness of H. queenslandicus is weak, and indicate that it is a synonym of H. spinosissimus. The taxonomic validity of other recently described seahorse species should be similarly scrutinised using combined genetic and detailed morphological methods.

2020 ◽  
Vol 194 (1) ◽  
pp. 84-99
Author(s):  
Inelia Escobar ◽  
Eduardo Ruiz-Ponce ◽  
Paula J Rudall ◽  
Michael F Fay ◽  
Oscar Toro-Núñez ◽  
...  

Abstract Gilliesieae are a South American tribe of Amaryllidaceae characterized by high floral diversity. Given different taxonomic interpretations and proposals for generic and specific relationships, a representative phylogenetic analysis is required to clarify the systematics of this group. The present study provides a framework for understanding phylogenetic relationships and contributing to the development of an appropriate taxonomic treatment of Gilliesieae. Molecular analyses, based on nuclear (ITS) and plastid DNA sequences (trnL-F and rbcL), resolve with strong support the monophyly of the tribe and the differentiation of two major clades. Clade I comprises the genera Gilliesia, Gethyum and Solaria and Clade II includes Miersia and Speea. These well-supported clades are mostly congruent with vegetative and karyotype characters rather than, e.g., floral symmetry. At the generic level, all molecular analyses reveal the paraphyly of Gilliesia and Miersia. Gethyum was found to be paraphyletic, resulting in the confirmation of Ancrumia as a distinct genus. Several instances of incongruent phylogenetic signals were found among data sets. The calibrated tree suggests a recent diversification of the tribe (Pliocene–Pleistocene), a contemporary process of speciation in which instances of hybridization and incomplete lineage sorting could explain patterns of paraphyly and incongruence of floral morphology.


2005 ◽  
Vol 272 (1572) ◽  
pp. 1577-1586 ◽  
Author(s):  
Niklas Wahlberg ◽  
Michael F Braby ◽  
Andrew V.Z Brower ◽  
Rienk de Jong ◽  
Ming-Min Lee ◽  
...  

Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions ( COI , EF-1α and wingless ). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1α data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.


The Auk ◽  
2019 ◽  
Vol 136 (1) ◽  
Author(s):  
Heather L McGuire ◽  
Sabrina S Taylor ◽  
Frederick H Sheldon

Abstract The Great White Heron (GWH) has an all-white plumage and occurs in the Gulf of Mexico and Caribbean. Described originally as Ardea occidentalis, it is now considered a subspecies of Great Blue Heron (GBH; A. herodias). GWH and GBH meet in Florida Bay at the southern tip of Florida, providing the opportunity to evaluate their interaction and species status. To this end, we examined size variation and mate choice across their contact zone and genetic variation range-wide. Measurements of 7 morphological characters indicate trends, but not a significant difference, in size between GBH and GWH in southern Florida. GBH and GWH nest mainly in different places (mainland vs. islands) and at different peak times. In Florida Bay, mixed pairs occur, but white-white and blue-blue pairs are more common than in a randomly mating population. Assessing mating, however, is complicated because most, if not all, nesting blue birds are of mixed parentage. Microsatellite DNA analysis indicates that white and blue herons in Florida Bay and the outer Keys (outside Florida Bay) form a group distinct from blue forms on Florida Peninsula and elsewhere in North America. However, some gene flow occurs from white herons on the outer Keys to white and blue herons in Florida Bay, and from blue herons in Florida Bay to GBH on the Florida Peninsula. GWH alleles occur in all North American populations, but whether this is from gene flow or incomplete lineage sorting is unknown. Deciding GWH's species status is difficult. GWH and GBH meet in an ecotone where some gene flow occurs, but behavior and habitat largely isolate them. We argue in favor of splitting GWH from GBH. Regardless of how it is ultimately classified, the GWH's small population needs to be actively managed as an isolate in an extremely vulnerable environment.


PhytoKeys ◽  
2020 ◽  
Vol 152 ◽  
pp. 27-104
Author(s):  
Kelly A. Shepherd ◽  
Brendan J. Lepschi ◽  
Eden A. Johnson ◽  
Andrew G. Gardner ◽  
Emily B. Sessa ◽  
...  

Close scrutiny of Goodenia (Goodeniaceae) and allied genera in the ‘Core Goodeniaceae’ over recent years has clarified our understanding of this captivating group. While expanded sampling, sequencing of multiple regions, and a genome skimming reinforced backbone clearly supported Goodenias.l. as monophyletic and distinct from Scaevola and Coopernookia, there appears to be no synapomorphic characters that uniquely characterise this morphologically diverse clade. Within Goodenias.l., there is strong support from nuclear, chloroplast and mitochondrial data for three major clades (Goodenia Clades A, B and C) and various subclades, which lead to earlier suggestions for the possible recognition of these as distinct genera. Through ongoing work, it has become evident that this is impractical, as conflict remains within the most recently diverged Clade C, likely due to recent radiation and incomplete lineage sorting. In light of this, it is proposed that a combination of morphological characters is used to circumscribe an expanded Goodenia that now includes Velleia, Verreauxia, Selliera and Pentaptilon, and an updated infrageneric classification is proposed to accommodate monophyletic subclades. A total of twenty-five new combinations, three reinstatements, and seven new names are published herein including Goodenia subg. Monochila sect. Monochila subsect. Infracta K.A.Sheph. subsect. nov. Also, a type is designated for Goodenia subg. Porphyranthus sect. Ebracteolatae (K.Krause) K.A.Sheph. comb. et stat. nov., and lectotypes or secondstep lectotypes are designated for a further three names.


2015 ◽  
Vol 145 (3-4) ◽  
pp. 283-301 ◽  
Author(s):  
David Cannatella

Published data from DNA sequences, morphology of 11 extant and 15 extinct frog taxa, and stratigraphic ranges of fossils were integrated to open a window into the deep-time evolution of Xenopus. The ages and morphological characters of fossils were used as independent datasets to calibrate a chronogram. We found that DNA sequences, either alone or in combination with morphological data and fossils, tended to support a close relationship between Xenopus and Hymenochirus, although in some analyses this topology was not significantly better than the Pipa + Hymenochirus topology. Analyses that excluded DNA data found strong support for the Pipa + Hymenochirus tree. The criterion for selecting the maximum age of the calibration prior influenced the age estimates, and our age estimates of early divergences in the tree of frogs are substantially younger than those of published studies. Node-dating and tip-dating calibrations, either alone or in combination, yielded older dates for nodes than did a root calibration alone. Our estimates of divergence times indicate that overwater dispersal, rather than vicariance due to the splitting of Africa and South America, may explain the presence of Xenopus in Africa and its closest fossil relatives in South America.


Author(s):  
Dirk Erpenbeck ◽  
Merrick Ekins ◽  
Nicole Enghuber ◽  
John N.A. Hooper ◽  
Helmut Lehnert ◽  
...  

Sponge species are infamously difficult to identify for non-experts due to their high morphological plasticity and the paucity of informative morphological characters. The use of molecular techniques certainly helps with species identification, but unfortunately it requires prior reference sequences. Holotypes constitute the best reference material for species identification, however their usage in molecular systematics and taxonomy is scarce and frequently not even attempted, mostly due to their antiquity and preservation history. Here we provide case studies in which we demonstrate the importance of using holotype material to answer phylogenetic and taxonomic questions. We also demonstrate the possibility of sequencing DNA fragments out of century-old holotypes. Furthermore we propose the deposition of DNA sequences in conjunction with new species descriptions.


2019 ◽  
Vol 40 (4) ◽  
pp. 511-521
Author(s):  
Luana Rodrigues Lima ◽  
Marcos Jorge Matias Dubeux ◽  
Filipe Augusto Cavalcanti do Nascimento ◽  
Daniel Pacheco Bruschi ◽  
Tamí Mott

Abstract Boana atlantica was described based on morphological characters to acommodate populations from Bahia state, Brazil, previously referred to as B. punctata. However, its taxonomic validity is questionable due to inconsistencies in bioacoustic data. Here, we integrate molecular, cytogenetic and morphological data to re-evaluate the taxonomic status of B. atlantica. Molecular analyses provided strong support for the hypothesis that B. atlantica is a valid species, being, however, nominal populations from Bahia state paraphyletic with respect to individuals of B. atlantica collected in Alagoas and Pernambuco states. These populations shown high genetic divergence in the 16S rRNA mitochondrial fragment, and we consider populations from Alagoas and Pernambuco as a putative new candidate species of Boana punctata group. The external and internal morphology of the tadpoles of these lineages were similar, but Nucleolar Organizer Regions (NOR) was sited in different chromosomes. Our results indicate that B. atlantica is paraphyletic and may be a complex of species. Morphological of adult and/or bioacoustical data should be further assessed to find diagnostic characters to tease these lineages apart and name them properly.


Author(s):  
Francisco A. Solís-Marín ◽  
David S.M. Billett ◽  
Joanne Preston ◽  
Alex D. Rogers

A new species of the synallactid sea cucumber genus Pseudostichopus is described, P. aemulatus sp. nov., based on genetic (DNA sequences of the mitochondrial gene Cytochrome Oxidase I [COI] gene) and morphological characters. A comparative molecular study with two other species of the same genus (P. villosus and P. mollis) and from a different family (Isostichopus fuscus) was carried out in order to clarify its taxonomic identity. The nucleotide distance between P. aemulatus sp. nov. and P. villosus and P. mollis is sufficient to support distinct species status. The estimated difference in the number of amino acids, coded for by a partially sequenced COI gene, within the species of the family Synallactidae ranged from 4 to 18. The phylogenetic analysis clearly supports separate species status of these sympatric morphotypes, as indicated by the morphological analysis.


2015 ◽  
Vol 46 (3) ◽  
pp. 269-290 ◽  
Author(s):  
Ian J. Kitching ◽  
C. Lorna Culverwell ◽  
Ralph E. Harbach

Lutzia Theobald was reduced to a subgenus of Culex in 1932 and was treated as such until it was restored to its original generic status in 2003, based mainly on modifications of the larvae for predation. Previous phylogenetic studies based on morphological and molecular data have provided conflicting support for the generic status of Lutzia: analyses of morphological data support the generic status whereas analyses based on DNA sequences do not. Our previous phylogenetic analyses of Culicini (based on 169 morphological characters and 86 species representing the four genera and 26 subgenera of Culicini, most informal group taxa of subgenus Culex and five outgroup species from other tribes) seemed to indicate a conflict between adult and larval morphological data. Hence, we conducted a series of comparative and data exclusion analyses to determine whether the alternative positions of Lutzia are due to conflicting signal or to a lack of strong signal. We found that separate and combined analyses of adult and larval data support different patterns of relationships between Lutzia and other Culicini. However, the majority of conflicting clades are poorly supported and once these are removed from consideration, most of the topological disparity disappears, along with much of the resolution, suggesting that morphology alone does not have sufficiently strong signal to resolve the position of Lutzia. We critically examine the results of other phylogenetic studies of culicinine relationships and conclude that no morphological or molecular data set analysed in any study conducted to date has adequate signal to place Lutzia unequivocally with regard to other taxa in Culicini. Phylogenetic relationships observed thus far suggest that Lutzia is placed within Culex but further data and extended taxon sampling are required to confirm its position relative to Culex.


Zootaxa ◽  
2009 ◽  
Vol 2294 (1) ◽  
pp. 1-22 ◽  
Author(s):  
RAINER SONNENBERG ◽  
ECKHARD BUSCH

The phylogeny of the West African genus Archiaphyosemion was studied with mitochondrial and nuclear DNA sequences. The results of the combined dataset presented here did not support a monophyletic group. After the exclusion of the type species of the genus, A. guineense, the remaining species form a well-supported monophyletic group. Based on these molecular results and supported by morphological data, we suggest a new name for this group, Nimbapanchax, new genus. Additionally, based on a recent collection in Guinea, two new Nimbapanchax species were described. The taxon Nimbapanchax leucopterygius, new species, is described for a nothobranchiid fish formerly misidentified as Archiaphyosemion maeseni (Poll, 1941). Nimbapanchax melanopterygius, new species, is described from the Mount Nimba region in southeastern Guinea. Both new Nimbapanchax species are clearly distinguished from their congeners by the coloration pattern of adult males. The results of the DNA data support the assumption based on color pattern and morphological characters that the new described species are sister taxa. The type of Aphyosemion maeseni Poll, 1941 was reexamined and transferred to the genus Epiplatys, a decision based on diagnostic morphological characters.


Sign in / Sign up

Export Citation Format

Share Document