scholarly journals Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity

2004 ◽  
Vol 101 (17) ◽  
pp. 6728-6733 ◽  
Author(s):  
A. K. Y. Fu ◽  
W.-Y. Fu ◽  
A. K. Y. Ng ◽  
W. W. Y. Chien ◽  
Y.-P. Ng ◽  
...  
2009 ◽  
Vol 87 (6) ◽  
pp. 825-833 ◽  
Author(s):  
Steven Fletcher ◽  
Joel A. Drewry ◽  
Vijay M. Shahani ◽  
Brent D. G. Page ◽  
Patrick T. Gunning

Signal transducer and activator of transcription protein 3 (STAT3) is a latent cytosolic transcription factor that is widely recognized as being a master regulator of the cellular functions that lead to the cancer phenotype. Constitutively activated STAT3 protein activity is routinely observed in human cancers, promoting uncontrolled cell proliferation and suppressing apoptosis. Until relatively recently, inhibition of STAT3 transcriptional activity was achieved indirectly via suppression of upstream kinase activators and extracellular cytokine and (or) growth factor stimuli. However, activated STAT3 forms transcriptionally functional STAT3–STAT3 dimers, providing a valid juncture for targeted downstream molecular inhibition. STAT3's prominent role in cancer has seen a decade of innovative and novel approaches to targeting constitutively active STAT3 protein–protein complexes. This mini-review outlines the progress made towards identifying molecular agents capable of silencing aberrant STAT3 signalling through the disruption of STAT3 complexation events.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 407 ◽  
Author(s):  
Sung-Jun Hong ◽  
Jin-Tae Kim ◽  
Su-Jung Kim ◽  
Nam-Chul Cho ◽  
Kyeojin Kim ◽  
...  

Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signals that are often constitutively activated in many cancerous or transformed cells and some stromal cells in the tumor microenvironment. Persistent STAT3 activation in malignant cells stimulates proliferation, survival, angiogenesis, invasion, and tumor-promoting inflammation. STAT3 undergoes activation through phosphorylation on tyrosine 705, which facilitates its dimerization. Dimeric STAT3 translocates to the nucleus, where it regulates the transcription of genes involved in cell proliferation, survival, etc. In the present study, a synthetic deguelin analogue SH48, discovered by virtual screening, inhibited the phosphorylation, nuclear translocation, and transcriptional activity of STAT3 in H-ras transformed human mammary epithelial MCF-10A cells (MCF10A-ras). We speculated that SH48 bearing an α,β-unsaturated carbonyl group could interact with a thiol residue of STAT3, thereby inactivating this transcription factor. Non-electrophilic analogues of SH48 failed to inhibit STAT3 activation, lending support to the above supposition. By utilizing a biotinylated SH48, we were able to demonstrate the complex formation between SH48 and STAT3. SH48 treatment to MCF10A-ras cells induced autophagy, which was verified by staining with a fluorescent acidotropic probe, LysoTracker Red, as well as upregulating the expression of LC3II and p62. In conclusion, the electrophilic analogue of deguelin interacts with STAT3 and inhibits its activation in MCF10A-ras cells, which may account for its induction of autophagic death.


Stem Cells ◽  
2017 ◽  
Vol 35 (10) ◽  
pp. 2129-2137 ◽  
Author(s):  
Ashish Mehta ◽  
Chrishan J. A. Ramachandra ◽  
Anuja Chitre ◽  
Pritpal Singh ◽  
Chong Hui Lua ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2391
Author(s):  
Alexander T. H. Wu ◽  
Hsu-Shan Huang ◽  
Ya-Ting Wen ◽  
Bashir Lawal ◽  
Ntlotlang Mokgautsi ◽  
...  

Glioblastoma (GBM) is one of the most aggressive brain malignancies with high incidences of developing treatment resistance, resulting in poor prognoses. Glioma stem cell (GSC)-derived exosomes are important players that contribute to GBM tumorigenesis and aggressive properties. Herein, we investigated the inhibitory roles of GBM-N019, a novel small molecule on the transfer of aggressive and invasive properties through the delivery of oncogene-loaded exosomes from GSCs to naïve and non-GSCs. Our results indicated that GBM-N019 significantly downregulated the expressions of the mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 6 (CDK6) signaling networks with concomitant inhibitory activities against viability, clonogenicity, and migratory abilities of U251 and U87MG cells. Treatments with GBM-N019 halted the exosomal transfer of protein kinase B (Akt), mTOR, p-mTOR, and Ras-related protein RAB27A to the naïve U251 and U87MG cells, and rescued the cells from invasive and stemness properties that were associated with activation of these oncogenes. GBM-N019 also synergized with and enhanced the anti-GBM activities of palbociclib in vitro and in vivo. In conclusion, our results suggested that GBM-N019 possesses good translational relevance as a potential anti-glioblastoma drug candidate worthy of consideration for clinical trials against recurrent glioblastomas.


2007 ◽  
Vol 21 (7) ◽  
pp. 1552-1568 ◽  
Author(s):  
Tomoshige Kino ◽  
Takamasa Ichijo ◽  
Niranjana D. Amin ◽  
Sashi Kesavapany ◽  
Yonghong Wang ◽  
...  

Abstract Glucocorticoids, major end effectors of the stress response, play an essential role in the homeostasis of the central nervous system and influence diverse functions of neuronal cells. We found that cyclin-dependent kinase 5 (CDK5), which plays important roles in the morphogenesis and functions of the nervous system and whose aberrant activation is associated with development of neurodegenerative disorders, interacted with the ligand-binding domain of the glucocorticoid receptor (GR) through its activator p35 or its active proteolytic fragment p25. CDK5 phosphorylated GR at multiple serines, including Ser203 and Ser211 of its N-terminal domain, and suppressed the transcriptional activity of this receptor on glucocorticoid-responsive promoters by attenuating attraction of transcriptional cofactors to DNA. In microarray analyses using rat cortical neuronal cells, the CDK5 inhibitor roscovitine differentially regulated the transcriptional activity of the GR on more than 90% of the endogenous glucocorticoid-responsive genes tested. Thus, CDK5 exerts some of its biological activities in neuronal cells through the GR, dynamically modulating GR transcriptional activity in a target promoter-dependent fashion.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S309-S309
Author(s):  
Svetlana Pundik ◽  
W David Lust ◽  
Jose Valerio ◽  
Michael Buczek ◽  
Randall D York ◽  
...  

2017 ◽  
Author(s):  
I Silva ◽  
V Rausch ◽  
T Peccerella ◽  
G Millonig ◽  
HK Seitz ◽  
...  

Author(s):  
Sowmya Suri ◽  
Rumana Waseem ◽  
Seshagiri Bandi ◽  
Sania Shaik

A 3D model of Cyclin-dependent kinase 5 (CDK5) (Accession Number: Q543f6) is generated based on crystal structure of P. falciparum PFPK5-indirubin-5-sulphonate ligand complex (PDB ID: 1V0O) at 2.30 Å resolution was used as template. Protein-ligand interaction studies were performed with flavonoids to explore structural features and binding mechanism of flavonoids as CDK5 (Cyclin-dependent kinase 5) inhibitors. The modelled structure was selected on the basis of least modeler objective function. The model was validated by PROCHECK. The predicted 3D model is reliable with 93.0% of amino acid residues in core region of the Ramachandran plot. Molecular docking studies with flavonoids viz., Diosmetin, Eriodictyol, Fortuneletin, Apigenin, Ayanin, Baicalein, Chrysoeriol and Chrysosplenol-D with modelled protein indicate that Diosmetin is the best inhibitor containing docking score of -8.23 kcal/mol. Cys83, Lys89, Asp84. The compound Diosmetin shows interactions with Cys83, Lys89, and Asp84.


Sign in / Sign up

Export Citation Format

Share Document