scholarly journals Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening inSaccharomyces cerevisiae

2004 ◽  
Vol 101 (24) ◽  
pp. 9039-9044 ◽  
Author(s):  
Stephanie Smith ◽  
Ji-Young Hwang ◽  
Soma Banerjee ◽  
Anju Majeed ◽  
Amitabha Gupta ◽  
...  
Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 291-303 ◽  
Author(s):  
I A.P Parkin ◽  
A G Sharpe ◽  
D J Lydiate

The progenitor diploid genomes (A and C) of the amphidiploid Brassica napus are extensively duplicated with 73% of genomic clones detecting two or more duplicate sequences within each of the diploid genomes. This comprehensive duplication of loci is to be expected in a species that has evolved through a polyploid ancestor. The majority of the duplicate loci within each of the diploid genomes were found in distinct linkage groups as collinear blocks of linked loci, some of which had undergone a variety of rearrangements subsequent to duplication, including inversions and translocations. A number of identical rearrangements were observed in the two diploid genomes, suggesting they had occurred before the divergence of the two species. A number of linkage groups displayed an organization consistent with centric fusion and (or) fission, suggesting this mechanism may have played a role in the evolution of Brassica genomes. For almost every genetically mapped locus detected in the A genome a homologous locus was found in the C genome; the collinear arrangement of these homologous markers allowed the primary regions of homoeology between the two genomes to be identified. At least 16 gross chromosomal rearrangements differentiated the two diploid genomes during their divergence from a common ancestor.Key words: genome evolution, Brassicaeae, polyploidy, homoeologous linkage groups.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2511
Author(s):  
Fatima Rasool ◽  
Muhammad Uzair ◽  
Muhammad Kashif Naeem ◽  
Nazia Rehman ◽  
Amber Afroz ◽  
...  

Phenylalanine ammonia-lyase (PAL) is the first enzyme in the phenylpropanoid pathway and plays a vital role in adoption, growth, and development in plants but in wheat its characterization is still not very clear. Here, we report a genome-wide identification of TaPAL genes and analysis of their transcriptional expression, duplication, and phylogeny in wheat. A total of 37 TaPAL genes that cluster into three subfamilies have been identified based on phylogenetic analysis. These TaPAL genes are distributed on 1A, 1B, 1D, 2A, 2B, 2D, 4A, 5B, 6A, 6B, and 6D chromosomes. Gene structure, conserved domain analysis, and investigation of cis-regulatory elements were systematically carried out. Chromosomal rearrangements and gene loss were observed by evolutionary analysis of the orthologs among Triticum urartu, Aegilops tauschii, and Triticum aestivum during the origin of bread wheat. Gene ontology analysis revealed that PAL genes play a role in plant growth. We also identified 27 putative miRNAs targeting 37 TaPAL genes. The high expression level of PAL genes was detected in roots of drought-tolerant genotypes compared to drought-sensitive genotypes. However, very low expressions of TaPAL10, TaPAL30, TaPAL32, TaPAL3, and TaPAL28 were recorded in all wheat genotypes. Arogenate dehydratase interacts with TaPAL29 and has higher expression in roots. The analysis of all identified genes in RNA-seq data showed that they are expressed in roots and shoots under normal and abiotic stress. Our study offers valuable data on the functioning of PAL genes in wheat.


2014 ◽  
Vol 226 (03) ◽  
Author(s):  
F Ponthan ◽  
D Pal ◽  
J Vormoor ◽  
O Heidenreich
Keyword(s):  

2007 ◽  
Vol 30 (4) ◽  
pp. 86
Author(s):  
M. Lanktree ◽  
J. Robinson ◽  
J. Creider ◽  
H. Cao ◽  
D. Carter ◽  
...  

Background: In Dunnigan-type familial partial lipodystrophy (FPLD) patients are born with normal fat distribution, but subcutaneous fat from extremities and gluteal regions are lost during puberty. The abnormal fat distribution leads to the development of metabolic syndrome (MetS), a cluster of phenotypes including hyperglycemia, dyslipidemia, hypertension, and visceral obesity. The study of FPLD as a monogenic model of MetS may uncover genetic risk factors of the common MetS which affects ~30% of adult North Americans. Two molecular forms of FPLD have been identified including FPLD2, resulting from heterozygous mutations in the LMNA gene, and FPLD3, resulting from both heterozygous dominant negative and haploinsufficiency mutations in the PPARG gene. However, many patients with clinically diagnosed FPLD have no mutation in either LMNA or PPARG, suggesting the involvement of additional genes in FPLD etiology. Methods: Here, we report the results of an Affymetrix 10K GeneChip microarray genome-wide linkage analysis study of a German kindred displaying the FPLD phenotype and no known lipodystrophy-causing mutations. Results: The investigation identified three chromosomal loci, namely 1q, 3p, and 9q, with non-parametric logarithm of odds (NPL) scores >2.7. While not meeting the criteria for genome-wide significance, it is interesting to note that the 1q and 3p peaks contain the LMNA and PPARG genes respectively. Conclusions: Three possible conclusions can be drawn from these results: 1) the peaks identified are spurious findings, 2) additional genes physically close to LMNA, PPARG, or within 9q, are involved in FPLD etiology, or 3) alternative disease causing mechanisms not identified by standard exon sequencing approaches, such as promoter mutations, alternative splicing, or epigenetics, are also responsible for FPLD.


Sign in / Sign up

Export Citation Format

Share Document