scholarly journals 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A->G

2005 ◽  
Vol 102 (14) ◽  
pp. 5180-5185 ◽  
Author(s):  
P. Pfister ◽  
N. Corti ◽  
S. Hobbie ◽  
C. Bruell ◽  
R. Zarivach ◽  
...  
2006 ◽  
Vol 50 (1) ◽  
pp. 359-361 ◽  
Author(s):  
Nicole Wolter ◽  
Anthony M. Smith ◽  
David J. Farrell ◽  
Keith P. Klugman

ABSTRACT A macrolide-resistant clinical isolate of Streptococcus pneumoniae with 23S rRNA mutations showed a heterogeneous phenotype and genotype. The mutant 23S rRNA genes from this isolate transformed susceptible strain R6 to resistance. Culture of resistant strain R6 in the absence of antibiotic pressure showed gene conversion to occur between the four 23S rRNA alleles, resulting in reversion to susceptibility with the resistant phenotype showing a fitness cost. These data explain the disappearance on subculture of heterogeneous macrolide resistance in the pneumococcus.


2009 ◽  
Vol 15 (4) ◽  
pp. 239-244 ◽  
Author(s):  
Haihong Hao ◽  
Menghong Dai ◽  
Yulian Wang ◽  
Dapeng Peng ◽  
Zhenli Liu ◽  
...  

2020 ◽  
Vol 69 (12) ◽  
pp. 1346-1350
Author(s):  
Yoshitomo Morinaga ◽  
Hiromichi Suzuki ◽  
Shigeyuki Notake ◽  
Takashi Mizusaka ◽  
Keiichi Uemura ◽  
...  

Introduction. Resistance against macrolide antibiotics in Mycoplasma pneumoniae is becoming non-negligible in terms of both appropriate therapy and diagnostic stewardship. Molecular methods have attractive features for the identification of Mycoplasma pneumoniae as well as its resistance-associated mutations of 23S ribosomal RNA (rRNA). Hypothesis/Gap Statement. The automated molecular diagnostic sytem can identify macrolide-resistant M. pneumoniae . Aim. To assess the performance of an automated molecular diagnostic system, GENECUBE Mycoplasma, in the detection of macrolide resistance-associated mutations. Methodology. To evaluate whether the system can distinguish mutant from wild-type 23S rRNA, synthetic oligonucleotides mimicking known mutations (high-level macrolide resistance, mutation in positions 2063 and 2064; low-level macrolide resistance, mutation in position 2067) were assayed. To evaluate clinical oropharyngeal samples, purified nucleic acids were obtained from M. pneumoniae -positive samples by using the GENECUBE system from nine hospitals. After confirmation by re-evaluation of M. pneumoniae positivity, Sanger-based sequencing of 23S rRNA and mutant typing using GENECUBE Mycoplasma were performed. Results. The system reproducibly identified all synthetic oligonucleotides associated with high-level macrolide resistance. Detection errors were only observed for A2067G (in 2 of the 10 measurements). The point mutation in 23S rRNA was detected in 67 (26.9 %) of 249 confirmed M. pneumoniae -positive clinical samples. The mutations at positions 2063, 2064 and 2617 were observed in 65 (97.0 %), 2 (3.0 %) and 0 (0.0 %) of the 67 samples, respectively. The mutations at positions 2063 and 2064 were A2063G and A2064G, respectively. The results from mutant typing using GENECUBE Mycoplasma were in full agreement with the results from sequence-based typing. Conclusion. GENECUBE Mycoplasma is a reliable test for the identification of clinically significant macrolide-resistant M. pneumoniae .


2021 ◽  
Author(s):  
juansheng zhang ◽  
diqiang zhang ◽  
xiaoqiang wang ◽  
xiaoguang wei ◽  
hao li ◽  
...  

Abstract ObjectiveTo compare the macrolide resistance and molecular characteristics of clinical isolated Bordetella pertussis, and explore the relationship between the macrolide-resistance and genotypes. MethodsErythromycin、azithromycin and clarithromycin susceptibility of clinical isolates during 2018-2020 was determined by E-test. The A2047G of the 23S rRNA genes was sequenced for drug-resistance mutation. Multilocus antigen sequence typing (MAST)、Multiple Locus Variable-number tandem repeat Analysis (MLVA) and Pulsed field gel electrophoresis (PFGE) methods were employed to do molecular typing for the strains. Results58 strains were isolated in this study, 46 of them were macrolide-resistant and 12 sensitive. All macrolide-resistant strains carried a genetic mutation at the A2047G site, genotype was prn1/ptxP1/ptxA1/fim3-1/fim2-1, the MLVA types were identified as MT195、MT55 and MT104, PFGE profiles were classified into BPSR23 and BpFINR9 types. However, no mutations were found in all macrolide-sensitive strains whose genotypes were (prn9 or prn2)/ptxP1/ptxA1/fim3-1/fim2-1 and MT27, and PFGE classified other profiles. ConclusionsThe clinical isolated Bordetella pertussis has serious resistance to erythromycin and began to spread to other macrolides. There were differences between macrolide-resistant and -sensitive Bordetella pertussis in genotypes. The acquisition of macrolide resistance may be associated with change of specific molecular types.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Bai Wei ◽  
Min Kang

We investigated the molecular mechanisms underlying macrolide resistance in 38 strains ofCampylobacterisolated from poultry. Twenty-seven strains were resistant to azithromycin and erythromycin, five showed intermediate azithromycin resistance and erythromycin susceptibility, and six showed azithromycin resistance and erythromycin susceptibility. FourCampylobacter jejuniand sixCampylobacter colistrains had azithromycin MICs which were 8–16 and 2–8-fold greater than those of erythromycin, respectively. The A2075G mutation in the 23S rRNA gene was detected in 11 resistant strains with MICs ranging from 64 to ≥ 512μg/mL. Mutations including V137A, V137S, and a six-amino acid insertion (114-VAKKAP-115) in ribosomal protein L22 were detected in theC. jejunistrains. Erythromycin ribosome methylase B-erm(B) was not detected in any strain. All strains except three showed increased susceptibility to erythromycin with twofold to 256-fold MIC change in the presence of phenylalanine arginine ß-naphthylamide (PAßN); the effects of PAßN on azithromycin MICs were limited in comparison to those on erythromycin MICs, and 13 strains showed no azithromycin MIC change in the presence of PAßN. Differences between azithromycin and erythromycin resistance and macrolide resistance phenotypes and genotypes were observed even in highly resistant strains. Further studies are required to better understand macrolide resistance inCampylobacter.


Nature ◽  
1995 ◽  
Vol 377 (6547) ◽  
pp. 309-314 ◽  
Author(s):  
Raymond R. Samaha ◽  
Rachel Green ◽  
Harry F. Noller

2012 ◽  
Vol 57 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Migla Miskinyte ◽  
Isabel Gordo

ABSTRACTMutations causing antibiotic resistance usually incur a fitness cost in the absence of antibiotics. The magnitude of such costs is known to vary with the environment. Little is known about the fitness effects of antibiotic resistance mutations when bacteria confront the host's immune system. Here, we study the fitness effects of mutations in therpoB,rpsL, andgyrAgenes, which confer resistance to rifampin, streptomycin, and nalidixic acid, respectively. These antibiotics are frequently used in the treatment of bacterial infections. We measured two important fitness traits—growth rate and survival ability—of 12Escherichia coliK-12 strains, each carrying a single resistance mutation, in the presence of macrophages. Strikingly, we found that 67% of the mutants survived better than the susceptible bacteria in the intracellular niche of the phagocytic cells. In particular, allE. colistreptomycin-resistant mutants exhibited an intracellular advantage. On the other hand, 42% of the mutants incurred a high fitness cost when the bacteria were allowed to divide outside of macrophages. This study shows that single nonsynonymous changes affecting fundamental processes in the cell can contribute to prolonged survival ofE. coliin the context of an infection.


1997 ◽  
Vol 41 (12) ◽  
pp. 2724-2728 ◽  
Author(s):  
A Occhialini ◽  
M Urdaci ◽  
F Doucet-Populaire ◽  
C M Bébéar ◽  
H Lamouliatte ◽  
...  

Resistance of Helicobacter pylori to macrolides is a major cause of failure of eradication therapies. Single base substitutions in the H. pylori 23S rRNA genes have been associated with macrolide resistance in the United States. Our goal was to extend this work to European strains, to determine the consequence of this mutation on erythromycin binding to H. pylori ribosomes, and to find a quick method to detect the mutation. Seven pairs of H. pylori strains were used, the parent strain being naturally susceptible to macrolides and the second strain having acquired an in vivo resistance during a treatment regimen that included clarithromycin. The identity of the strains was confirmed by random amplified polymorphic DNA testing with two different primers, indicating that resistance was the result of the selection of variants of the infecting strain. All resistant strains were found to have point mutations at position 2143 (three cases) or 2144 (four cases) but never on the opposite DNA fragment of domain V of the 23S rRNA gene. The mutation was A-->G in all cases except one (A-->C) at position 2143. Using BsaI and BbsI restriction enzymes on the amplified products, we confirmed the mutations of A-->G at positions 2144 and 2143, respectively. Macrolide binding was tested on purified ribosomes isolated from four pairs of strains with [14C]erythromycin. Erythromycin binding increased in a dose-dependent manner for the susceptible strain but not for the resistant one. In conclusion we suggest that the limited disruption of the peptidyltransferase loop conformation, caused by a point mutation, reduces drug binding and consequently confers resistance to macrolides. Finally, the macrolide resistance could be detected without sequencing by performing restriction fragment length polymorphism with appropriate restriction enzymes.


2001 ◽  
Vol 183 (14) ◽  
pp. 4382-4385 ◽  
Author(s):  
Steven T. Gregory ◽  
Jamie H. D. Cate ◽  
Albert E. Dahlberg

ABSTRACT Spontaneous, erythromycin-resistant mutants of Thermus thermophilus IB-21 were isolated and found to carry the mutation A2058G in one of two 23S rRNA operons. The heterozygosity of these mutants indicates that A2058G confers a dominant or codominant phenotype in this organism. This mutation provides a valuable tool for the genetic manipulation of the 23S rRNA genes ofThermus.


2019 ◽  
Vol 70 (5) ◽  
pp. 805-810 ◽  
Author(s):  
Yang Li ◽  
Xiaohong Su ◽  
Wenjing Le ◽  
Sai Li ◽  
Zhaoyan Yang ◽  
...  

Abstract Background Mycoplasma genitalium (MG) causes symptomatic urethritis in men, and can infect alone or together with other sexually transmitted infection (STI) agents. Methods The prevalence of MG and other STIs was determined in 1816 men with symptomatic urethritis. Resistance of MG to macrolides and fluoroquinolones was determined by sequencing; the impact of recent antimicrobial usage on the distribution of MG single or mixed infections was determined. Results Overall, prevalence of MG infection was 19.7% (358/1816). Fifty-four percent (166/307) of MG infections occurred alone in the absence of other STI agents. Men with single MG infection self-administered or were prescribed antibiotics more often in the 30 days prior to enrollment than subjects with urethritis caused by MG coinfection (P < .0001). Higher rates (96.7%) of infection with macrolide resistance in MG were identified in men who had taken macrolides prior to enrollment (P < .03). Overall, 88.9% (303/341) of 23S ribosomal RNA (rRNA) genes contained mutations responsible for macrolide resistance; 89.5% (308/344) of parC and 12.4% (42/339) of gyrA genes had mutations responsible for fluoroquinolone resistance. Approximately 88% (270/308) of MG had combined mutations in 23S rRNA and parC genes; 10.4% (32/308) had mutations in all 3 genes. Conclusions MG was the single pathogen identified in 11% of men with symptomatic urethritis. Overall, nearly 90% of MG infections were resistant to macrolides and fluoroquinolones. Men who took macrolides in the 30 days prior to enrollment had higher rates (97%) of macrolide-resistant MG. Resistance was associated with numerous mutations in 23SrRNA, parC, and gyrA genes.


Sign in / Sign up

Export Citation Format

Share Document