scholarly journals Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells

2006 ◽  
Vol 103 (32) ◽  
pp. 12167-12172 ◽  
Author(s):  
L. V. Rodriguez ◽  
Z. Alfonso ◽  
R. Zhang ◽  
J. Leung ◽  
B. Wu ◽  
...  
2021 ◽  
Vol 16 (2) ◽  
pp. 025016
Author(s):  
Martina Travnickova ◽  
Nikola Slepickova Kasalkova ◽  
Antonin Sedlar ◽  
Martin Molitor ◽  
Jana Musilkova ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e20540 ◽  
Author(s):  
Diana Klein ◽  
Philip Weißhardt ◽  
Veronika Kleff ◽  
Holger Jastrow ◽  
Heinz Günther Jakob ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 792
Author(s):  
Xixiang Gao ◽  
Mingjie Gao ◽  
Jolanta Gorecka ◽  
John Langford ◽  
Jia Liu ◽  
...  

Induced pluripotent stem cells (iPSC) represent an innovative, somatic cell-derived, easily obtained and renewable stem cell source without considerable ethical issues. iPSC and their derived cells may have enhanced therapeutic and translational potential compared with other stem cells. We previously showed that human iPSC-derived smooth muscle cells (hiPSC-SMC) promote angiogenesis and wound healing. Accordingly, we hypothesized that hiPSC-SMC may be a novel treatment for human patients with chronic limb-threatening ischemia who have no standard options for therapy. We determined the angiogenic potential of hiPSC-SMC in a murine hindlimb ischemia model. hiPSC-SMC were injected intramuscularly into nude mice after creation of hindlimb ischemia. Functional outcomes and perfusion were measured using standardized scores, laser Doppler imaging, microCT, histology and immunofluorescence. Functional outcomes and blood flow were improved in hiPSC-SMC-treated mice compared with controls (Tarlov score, p < 0.05; Faber score, p < 0.05; flow, p = 0.054). hiPSC-SMC-treated mice showed fewer gastrocnemius fibers (p < 0.0001), increased fiber area (p < 0.0001), and enhanced capillary density (p < 0.01); microCT showed more arterioles (<96 μm). hiPSC-SMC treatment was associated with fewer numbers of macrophages, decreased numbers of M1-type (p < 0.05) and increased numbers of M2-type macrophages (p < 0.0001). Vascular endothelial growth factor (VEGF) expression in ischemic limbs was significantly elevated with hiPSC-SMC treatment (p < 0.05), and inhibition of VEGFR-2 with SU5416 was associated with fewer capillaries in hiPSC-SMC-treated limbs (p < 0.0001). hiPSC-SMC promote VEGF-mediated angiogenesis, leading to improved hindlimb ischemia. Stem cell therapy using iPSC-derived cells may represent a novel and potentially translatable therapy for limb-threatening ischemia.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1485
Author(s):  
Adrian Sowka ◽  
Pawel Dobrzyn

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


2017 ◽  
Vol 15 (6) ◽  
pp. 3787-3795 ◽  
Author(s):  
Kaisaier Aji ◽  
Yun Zhang ◽  
Abudusaimi Aimaiti ◽  
Yujie Wang ◽  
Mulati Rexiati ◽  
...  

2017 ◽  
Vol 70 (16) ◽  
pp. C70
Author(s):  
Chengfei Peng ◽  
Xiaoping Shao ◽  
Xiaoxiang Tian ◽  
Chenghui Yan ◽  
Yaling Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document