scholarly journals Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy

2007 ◽  
Vol 104 (10) ◽  
pp. 3777-3781 ◽  
Author(s):  
P. Zhang ◽  
C. M. Khursigara ◽  
L. M. Hartnell ◽  
S. Subramaniam
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Na Zhang ◽  
Hong Shan ◽  
Mingdong Liu ◽  
Tianhao Li ◽  
Rui Luo ◽  
...  

AbstractParamyxoviruses, including the mumps virus, measles virus, Nipah virus and Sendai virus (SeV), have non-segmented single-stranded negative-sense RNA genomes which are encapsidated by nucleoproteins into helical nucleocapsids. Here, we reported a double-headed SeV nucleocapsid assembled in a tail-to-tail manner, and resolved its helical stems and clam-shaped joint at the respective resolutions of 2.9 and 3.9 Å, via cryo-electron microscopy. Our structures offer important insights into the mechanism of the helical polymerization, in particular via an unnoticed exchange of a N-terminal hole formed by three loops of nucleoproteins, and unveil the clam-shaped joint in a hyper-closed state for nucleocapsid dimerization. Direct visualization of the loop from the disordered C-terminal tail provides structural evidence that C-terminal tail is correlated to the curvature of nucleocapsid and links nucleocapsid condensation and genome replication and transcription with different assembly forms.


1998 ◽  
Vol 280 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Arun Malhotra ◽  
Pawel Penczek ◽  
Rajendra K Agrawal ◽  
Irene S Gabashvili ◽  
Robert A Grassucci ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander Theßeling ◽  
Tim Rasmussen ◽  
Sabrina Burschel ◽  
Daniel Wohlwend ◽  
Jan Kägi ◽  
...  

Abstract Cytochrome bd oxidases are terminal reductases of bacterial and archaeal respiratory chains. The enzyme couples the oxidation of ubiquinol or menaquinol with the reduction of dioxygen to water, thus contributing to the generation of the protonmotive force. Here, we determine the structure of the Escherichia coli bd oxidase treated with the specific inhibitor aurachin by cryo-electron microscopy (cryo-EM). The major subunits CydA and CydB are related by a pseudo two fold symmetry. The heme b and d cofactors are found in CydA, while ubiquinone-8 is bound at the homologous positions in CydB to stabilize its structure. The architecture of the E. coli enzyme is highly similar to that of Geobacillus thermodenitrificans, however, the positions of heme b595 and d are interchanged, and a common oxygen channel is blocked by a fourth subunit and substituted by a more narrow, alternative channel. Thus, with the same overall fold, the homologous enzymes exhibit a different mechanism.


2017 ◽  
Author(s):  
Manuela K. Hospenthal ◽  
Tiago R. D. Costa ◽  
Adam Redzej ◽  
James Lillington ◽  
Gabriel Waksman

ABSTRACTChaperone-usher pili are long, polymeric protein fibres displayed on the surface of many bacterial pathogens. These critical virulence factors allow bacteria to specifically attach to host cells during infection. The type 1 and P pili of uropathogenicEscherichia coli(UPEC) play important roles during UPEC’s colonisation of the urinary tract, mediating bacterial attachment to the bladder and kidney, respectively. Also, their biomechanical properties that allow them to reversibly uncoil in response to flow-induced forces are critical for UPEC’s ability to retain a foothold in the unique and hostile environment of the urinary tract. Here we provide the 4.2 Å resolution cryo-electron microscopy (cryo-EM) structure of the type 1 pilus rod, which together with the previous structure of the P pilus rod, enables us to understand the remarkable “spring-like” properties of chaperone-usher pili in more detail.


2019 ◽  
Author(s):  
Vanja Stojković ◽  
Alexander G. Myasnikov ◽  
Iris D. Young ◽  
Adam Frost ◽  
James S. Fraser ◽  
...  

ABSTRACTPost-transcriptional ribosomal RNA (rRNA) modifications are present in all organisms, but their exact functional roles and positions are yet to be fully characterized. Modified nucleotides have been implicated in the stabilization of RNA structure and regulation of ribosome biogenesis and protein synthesis. In some instances, rRNA modifications can confer antibiotic resistance. High-resolution ribosome structures are thus necessary for precise determination of modified nucleotides’ positions, a task that has previously been accomplished by X-ray crystallography. Here we present a cryo-electron microscopy (cryo-EM) structure of Escherichia coli (E. coli) 50S subunit at an average resolution of 2.2Å as an additional approach for mapping modification sites. Our structure confirms known modifications present in 23S rRNA and additionally allows for localization of Mg2+ ions and their coordinated water molecules. Using our cryo-EM structure as a testbed, we developed a program for identification of post-transcriptional rRNA modifications using a cryo-EM map. This program can be easily used on any RNA-containing cryo-EM structure, and an associated Coot plugin allows for visualization of validated modifications, making it highly accessible.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenxin Hu ◽  
Hongjin Zheng

AbstractAs one of the most elegant biological processes developed in bacteria, the siderophore-mediated iron uptake demands the action of specific ATP-binding cassette (ABC) importers. Although extensive studies have been done on various ABC importers, the molecular basis of these iron-chelated-siderophore importers are still not fully understood. Here, we report the structure of a ferrichrome importer FhuCDB from Escherichia coli at 3.4 Å resolution determined by cryo electron microscopy. The structure revealed a monomeric membrane subunit of FhuB with a substrate translocation pathway in the middle. In the pathway, there were unique arrangements of residues, especially layers of methionines. Important residues found in the structure were interrogated by mutagenesis and functional studies. Surprisingly, the importer’s ATPase activity was decreased upon FhuD binding, which deviated from the current understanding about bacterial ABC importers. In summary, to the best of our knowledge, these studies not only reveal a new structural twist in the type II ABC importer subfamily, but also provide biological insights in the transport of iron-chelated siderophores.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Hélène Malet ◽  
Kaiyin Liu ◽  
Majida El Bakkouri ◽  
Sze Wah Samuel Chan ◽  
Gregory Effantin ◽  
...  

A 3.3 MDa macromolecular cage between two Escherichia coli proteins with seemingly incompatible symmetries–the hexameric AAA+ ATPase RavA and the decameric inducible lysine decarboxylase LdcI–is reconstructed by cryo-electron microscopy to 11 Å resolution. Combined with a 7.5 Å resolution reconstruction of the minimal complex between LdcI and the LdcI-binding domain of RavA, and the previously solved crystal structures of the individual components, this work enables to build a reliable pseudoatomic model of this unusual architecture and to identify conformational rearrangements and specific elements essential for complex formation. The design of the cage created via lateral interactions between five RavA rings is unique for the diverse AAA+ ATPase superfamily.


Sign in / Sign up

Export Citation Format

Share Document