scholarly journals Functionality of the voltage-gated proton channel truncated in S4

2009 ◽  
Vol 107 (5) ◽  
pp. 2313-2318 ◽  
Author(s):  
Souhei Sakata ◽  
Tatsuki Kurokawa ◽  
Morten H. H. Nørholm ◽  
Masahiro Takagi ◽  
Yoshifumi Okochi ◽  
...  

The voltage sensor domain (VSD) is the key module for voltage sensing in voltage-gated ion channels and voltage-sensing phosphatases. Structurally, both the VSD and the recently discovered voltage-gated proton channels (Hv channels) voltage sensor only protein (VSOP) and Hv1 contain four transmembrane segments. The fourth transmembrane segment (S4) of Hv channels contains three periodically aligned arginines (R1, R2, R3). It remains unknown where protons permeate or how voltage sensing is coupled to ion permeation in Hv channels. Here we report that Hv channels truncated just downstream of R2 in the S4 segment retain most channel properties. Two assays, site-directed cysteine-scanning using accessibility of maleimide-reagent as detected by Western blotting and insertion into dog pancreas microsomes, both showed that S4 inserts into the membrane, even if it is truncated between the R2 and R3 positions. These findings provide important clues to the molecular mechanism underlying voltage sensing and proton permeation in Hv channels.

2021 ◽  
Vol 153 (9) ◽  
Author(s):  
Chang Zhao ◽  
Liang Hong ◽  
Saleh Riahi ◽  
Victoria T. Lim ◽  
Douglas J. Tobias ◽  
...  

Voltage-gated sodium, potassium, and calcium channels consist of four voltage-sensing domains (VSDs) that surround a central pore domain and transition from a down state to an up state in response to membrane depolarization. While many types of drugs bind pore domains, the number of organic molecules known to bind VSDs is limited. The Hv1 voltage-gated proton channel is made of two VSDs and does not contain a pore domain, providing a simplified model for studying how small ligands interact with VSDs. Here, we describe a ligand, named HIF, that interacts with the Hv1 VSD in the up and down states. We find that HIF rapidly inhibits proton conduction in the up state by blocking the open channel, as previously described for 2-guanidinobenzimidazole and its derivatives. HIF, however, interacts with a site slowly accessible in the down state. Functional studies and MD simulations suggest that this interaction traps the compound in a narrow pocket lined with charged residues within the VSD intracellular vestibule, which results in slow recovery from inhibition. Our findings point to a “wrench in gears” mechanism whereby side chains within the binding pocket trap the compound as the teeth of interlocking gears. We propose that the use of screening strategies designed to target binding sites with slow accessibility, similar to the one identified here, could lead to the discovery of new ligands capable of interacting with VSDs of other voltage-gated ion channels in the down state.


Physiology ◽  
2010 ◽  
Vol 25 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Thomas E. DeCoursey

The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1–S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.


2019 ◽  
Vol 116 (38) ◽  
pp. 18951-18961 ◽  
Author(s):  
Richard Banh ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Boris Musset ◽  
Sarah Thomas ◽  
...  

The hydrophobic gasket (HG), a ring of hydrophobic amino acids in the voltage-sensing domain of most voltage-gated ion channels, forms a constriction between internal and external aqueous vestibules. Cationic Arg or Lys side chains lining the S4 helix move through this “gating pore” when the channel opens. S4 movement may occur during gating of the human voltage-gated proton channel, hHV1, but proton current flows through the same pore in open channels. Here, we replaced putative HG residues with less hydrophobic residues or acidic Asp. Substitution of individuals, pairs, or all 3 HG positions did not impair proton selectivity. Evidently, the HG does not act as a secondary selectivity filter. However, 2 unexpected functions of the HG in HV1 were discovered. Mutating HG residues independently accelerated channel opening and compromised the closed state. Mutants exhibited open–closed gating, but strikingly, at negative voltages where “normal” gating produces a nonconducting closed state, the channel leaked protons. Closed-channel proton current was smaller than open-channel current and was inhibited by 10 μM Zn2+. Extreme hyperpolarization produced a deeper closed state through a weakly voltage-dependent transition. We functionally identify the HG as Val109, Phe150, Val177, and Val178, which play a critical and exclusive role in preventing H+ influx through closed channels. Molecular dynamics simulations revealed enhanced mobility of Arg208 in mutants exhibiting H+ leak. Mutation of HG residues produces gating pore currents reminiscent of several channelopathies.


2005 ◽  
Vol 288 (2) ◽  
pp. L398-L408 ◽  
Author(s):  
Ricardo Murphy ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Thomas E. DeCoursey

Voltage-gated proton channels are expressed highly in rat alveolar epithelial cells. Here we investigated whether these channels contribute to pH regulation. The intracellular pH (pHi) was monitored using BCECF in cultured alveolar epithelial cell monolayers and found to be 7.13 in nominally HCO3−-free solutions [at external pH (pHo) 7.4]. Cells were acid-loaded by the NH4+ prepulse technique, and the recovery was observed. Under conditions designed to eliminate the contribution of other transporters that alter pH, addition of 10 μM ZnCl2, a proton channel inhibitor, slowed recovery about twofold. In addition, the pHi minimum was lower, and the time to nadir was increased. Slowing of recovery by ZnCl2 was observed at pHo 7.4 and pHo 8.0 and in normal and high-K+ Ringer solutions. The observed rate of Zn2+-sensitive pHi recovery required activation of a small fraction of the available proton conductance. We conclude that proton channels contribute to pHi recovery after an acid load in rat alveolar epithelial cells. Addition of ZnCl2 had no effect on pHi in unchallenged cells, consistent with the expectation that proton channels are not open in resting cells. After inhibition of all known pH regulators, slow pHi recovery persisted, suggesting the existence of a yet-undefined acid extrusion mechanism in these cells.


2016 ◽  
Vol 310 (8) ◽  
pp. R679-R690 ◽  
Author(s):  
Paul M. O'Connor ◽  
Avirup Guha ◽  
Carly A. Stilphen ◽  
Jingping Sun ◽  
Chunhua Jin

Hv1 is a voltage-gated proton channel highly expressed in phagocytic cells, where it participates in the NADPH oxidase-dependent respiratory burst. We have recently identified Hv1 as a novel renal channel, expressed in the renal medullary thick ascending limb that appears to importantly contribute to the pathogenesis of renal hypertensive injury in the Dahl salt-sensitive rat model. The purpose of this review is to describe the experimental approaches that we have undertaken to identify the source of excess reactive oxygen species production in the renal outer medulla of Dahl salt-sensitive rats and the resulting evidence that the voltage-gated proton channel Hv1 mediates augmented superoxide production and contributes to renal medullary oxidative stress and renal injury. In addition, we will attempt to point out areas of current controversy, as well as propose areas in which further experimental studies are likely to move the field forward. The content of the following review was presented as part of the Water and Electrolyte Homeostasis Section New Investigator Award talk at Experimental Biology 2014.


2018 ◽  
Author(s):  
Marina A. Kasimova ◽  
Erik Lindahl ◽  
Lucie Delemotte

ABSTRACTVoltage-sensitive membrane proteins are united by the ability to transform changes in the membrane potential into mechanical work. They are responsible for a spectrum of key physiological processes in living organisms, including electric signaling and progression along the cell cycle. While the voltage-sensing mechanism has been well characterized for some membrane proteins such as voltage-gated ion channels, for others even the location of the voltage-sensing elements remains unknown. The detection of these elements using experimental techniques is complicated due to the large diversity of membrane proteins. Here, we suggest a computational approach to predict voltage-sensing elements in any membrane protein independent of structure or function. It relies on the estimation of the capacity of a protein to respond to changes in the membrane potential. We first show how this property correlates well with voltage sensitivity by applying our approach to a set of membrane proteins including voltage-sensitive and voltage-insensitive ones. We further show that it correctly identifies true voltage-sensitive residues in the voltage sensor domain of voltage-gated ion channels. Finally, we investigate six membrane proteins for which the voltage-sensing elements have not yet been characterized and identify residues and ions potentially involved in the response to voltage. The suggested approach is fast and simple and allows for characterization of voltage sensitivity that goes beyond mere identification of charges. We anticipate that its application prior to mutagenesis experiments will allow for significant reduction of the number of potential voltage-sensitive elements to be tested.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Akira Kawanabe ◽  
Masaki Hashimoto ◽  
Manami Nishizawa ◽  
Kazuhisa Nishizawa ◽  
Hirotaka Narita ◽  
...  

Voltage-sensing phosphatases (VSP) contain a voltage sensor domain (VSD) similar to that of voltage-gated ion channels but lack a pore-gate domain. A VSD in a VSP regulates the cytoplasmic catalytic region (CCR). However, the mechanisms by which the VSD couples to the CCR remain elusive. Here we report a membrane interface (named ‘the hydrophobic spine’), which is essential for the coupling of the VSD and CCR. Our molecular dynamics simulations suggest that the hydrophobic spine of Ciona intestinalis VSP (Ci-VSP) provides a hinge-like motion for the CCR through the loose membrane association of the phosphatase domain. Electrophysiological experiments indicate that the voltage-dependent phosphatase activity of Ci-VSP depends on the hydrophobicity and presence of an aromatic ring in the hydrophobic spine. Analysis of conformational changes in the VSD and CCR suggests that the VSP has two states with distinct enzyme activities and that the second transition depends on the hydrophobic spine.


Sign in / Sign up

Export Citation Format

Share Document