scholarly journals Voltage-Gated Proton Channels Find Their Dream Job Managing the Respiratory Burst in Phagocytes

Physiology ◽  
2010 ◽  
Vol 25 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Thomas E. DeCoursey

The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1–S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.

2006 ◽  
Vol 127 (6) ◽  
pp. 659-672 ◽  
Author(s):  
Jon K. Femling ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Balázs Rada ◽  
A. Paige Davis ◽  
...  

Electrophysiological events are of central importance during the phagocyte respiratory burst, because NADPH oxidase is electrogenic and voltage sensitive. We investigated the recent suggestion that large-conductance, calcium-activated K+ (BK) channels, rather than proton channels, play an essential role in innate immunity (Ahluwalia, J., A. Tinker, L.H. Clapp, M.R. Duchen, A.Y. Abramov, S. Page, M. Nobles, and A.W. Segal. 2004. Nature. 427:853–858). In PMA-stimulated human neutrophils or eosinophils, we did not detect BK currents, and neither of the BK channel inhibitors iberiotoxin or paxilline nor DPI inhibited any component of outward current. BK inhibitors did not inhibit the killing of bacteria, nor did they affect NADPH oxidase-dependent degradation of bacterial phospholipids by extracellular gIIA-PLA2 or the production of superoxide anion (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2^{.}}^{{-}}\) \end{document}). Moreover, an antibody against the BK channel did not detect immunoreactive protein in human neutrophils. A required role for voltage-gated proton channels is demonstrated by Zn2+ inhibition of NADPH oxidase activity assessed by H2O2 production, thus validating previous studies showing that Zn2+ inhibited \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2^{.}}^{{-}}\) \end{document} production when assessed by cytochrome c reduction. In conclusion, BK channels were not detected in human neutrophils or eosinophils, and BK inhibitors did not impair antimicrobial activity. In contrast, we present additional evidence that voltage-gated proton channels serve the essential role of charge compensation during the respiratory burst.


2019 ◽  
Vol 116 (38) ◽  
pp. 18951-18961 ◽  
Author(s):  
Richard Banh ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Boris Musset ◽  
Sarah Thomas ◽  
...  

The hydrophobic gasket (HG), a ring of hydrophobic amino acids in the voltage-sensing domain of most voltage-gated ion channels, forms a constriction between internal and external aqueous vestibules. Cationic Arg or Lys side chains lining the S4 helix move through this “gating pore” when the channel opens. S4 movement may occur during gating of the human voltage-gated proton channel, hHV1, but proton current flows through the same pore in open channels. Here, we replaced putative HG residues with less hydrophobic residues or acidic Asp. Substitution of individuals, pairs, or all 3 HG positions did not impair proton selectivity. Evidently, the HG does not act as a secondary selectivity filter. However, 2 unexpected functions of the HG in HV1 were discovered. Mutating HG residues independently accelerated channel opening and compromised the closed state. Mutants exhibited open–closed gating, but strikingly, at negative voltages where “normal” gating produces a nonconducting closed state, the channel leaked protons. Closed-channel proton current was smaller than open-channel current and was inhibited by 10 μM Zn2+. Extreme hyperpolarization produced a deeper closed state through a weakly voltage-dependent transition. We functionally identify the HG as Val109, Phe150, Val177, and Val178, which play a critical and exclusive role in preventing H+ influx through closed channels. Molecular dynamics simulations revealed enhanced mobility of Arg208 in mutants exhibiting H+ leak. Mutation of HG residues produces gating pore currents reminiscent of several channelopathies.


2009 ◽  
Vol 107 (5) ◽  
pp. 2313-2318 ◽  
Author(s):  
Souhei Sakata ◽  
Tatsuki Kurokawa ◽  
Morten H. H. Nørholm ◽  
Masahiro Takagi ◽  
Yoshifumi Okochi ◽  
...  

The voltage sensor domain (VSD) is the key module for voltage sensing in voltage-gated ion channels and voltage-sensing phosphatases. Structurally, both the VSD and the recently discovered voltage-gated proton channels (Hv channels) voltage sensor only protein (VSOP) and Hv1 contain four transmembrane segments. The fourth transmembrane segment (S4) of Hv channels contains three periodically aligned arginines (R1, R2, R3). It remains unknown where protons permeate or how voltage sensing is coupled to ion permeation in Hv channels. Here we report that Hv channels truncated just downstream of R2 in the S4 segment retain most channel properties. Two assays, site-directed cysteine-scanning using accessibility of maleimide-reagent as detected by Western blotting and insertion into dog pancreas microsomes, both showed that S4 inserts into the membrane, even if it is truncated between the R2 and R3 positions. These findings provide important clues to the molecular mechanism underlying voltage sensing and proton permeation in Hv channels.


2018 ◽  
Vol 114 (3) ◽  
pp. 305a
Author(s):  
Guangshuai Li ◽  
Katsuuki Miura ◽  
Yoshiko Hino ◽  
Yoshie Moriura ◽  
Junko Kawawaki ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2620
Author(s):  
Yoshifumi Okochi ◽  
Yasushi Okamura

The voltage-gated proton channel, Hv1, also termed VSOP, was discovered in 2006. It has long been suggested that proton transport through voltage-gated proton channels regulate reactive oxygen species (ROS) production in phagocytes by counteracting the charge imbalance caused by the activation of NADPH oxidase. Discovery of Hv1/VSOP not only confirmed this process in phagocytes, but also led to the elucidation of novel functions in phagocytes. The compensation of charge by Hv1/VSOP sustains ROS production and is also crucial for promoting Ca2+ influx at the plasma membrane. In addition, proton extrusion into neutrophil phagosomes by Hv1/VSOP is necessary to maintain neutral phagosomal pH for the effective killing of bacteria. Contrary to the function of Hv1/VSOP as a positive regulator for ROS generation, it has been revealed that Hv1/VSOP also acts to inhibit ROS production in neutrophils. Hv1/VSOP inhibits hypochlorous acid production by regulating degranulation, leading to reduced inflammation upon fungal infection, and suppresses the activation of extracellular signal-regulated kinase (ERK) signaling by inhibiting ROS production. Thus, Hv1/VSOP is a two-way player regulating ROS production. Here, we review the functions of Hv1/VSOP in neutrophils and discuss future perspectives.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Luis A. Videla ◽  
Pamela Cornejo ◽  
Pamela Romanque ◽  
Catherine Santibáñez ◽  
Iván Castillo ◽  
...  

L-3,3′,5-triiodothyronine (T3) administration upregulates nuclear factor-E2-related factor 2 (Nrf2) in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl3; 10 mg/kg i.v. 72 h before T3[0.1 mg/kg i.p.]) or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T3), and determinations were performed 2 h after T3. T3increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1), catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot) over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl3treatment prior to T3, an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1)/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T3-induced tumor necrosis factor-α(TNF-α) response was eliminated by previous GdCl3administration. Similar to GdCl3, apocynin given before T3significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T3. This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl3or apocynin given prior to T3, thus hindering Nrf2 activation.


2018 ◽  
Author(s):  
David C. Thomas ◽  
Louis-Marie Charbonnier ◽  
Andrea Schejtman ◽  
Hasan Aldhekri ◽  
Eve Coomber ◽  
...  

AbstractThe phagocyte respiratory burst is mediated by the phagocyte NADPH oxidase, a multi-protein subunit complex that facilitates production of reactive oxygen species and which is essential for host defence. Monogenic deficiency of individual subunits leads to chronic granulomatous disease (CGD), which is characterized by an inability to make reactive oxygen species, leading to severe opportunistic infections and auto-inflammation. However, not all cases of CGD are due to mutations in previously identified subunits. We recently showed that Eros, a novel and highly conserved ER-resident transmembrane protein, is essential for the phagocyte respiratory burst in mice because it is required for expression of gp91phox-p22phox heterodimer, which are the membrane bound components of the phagocyte NADPH oxidase. We now show that the function of EROS is conserved in human cells and describe a case of CGD secondary to a homozygous EROS mutation that abolishes EROS protein expression. This work demonstrates the fundamental importance of EROS in human immunity and describes a novel cause of CGD.Clinical ImplicationsChronic granulomatous disease is caused by an inability to make reactive oxygen species via the phagocyte NADPH oxidase. Mutations in C17ORF62/EROS, which controls gp91phox- p22phox abundance, are a novel cause of chronic granulomatous disease.Key MessagesThe murine gene, Eros, is known to regulate abundance of gp91phox-p22phox heterodimer and Eros deficient mice are susceptible to infectionWe show that the function of EROS is conserved in human cells and that a homozygous mutation in EROS causes chronic granulomatous disease


Sign in / Sign up

Export Citation Format

Share Document