Voltage-gated proton channels help regulate pHi in rat alveolar epithelium

2005 ◽  
Vol 288 (2) ◽  
pp. L398-L408 ◽  
Author(s):  
Ricardo Murphy ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Thomas E. DeCoursey

Voltage-gated proton channels are expressed highly in rat alveolar epithelial cells. Here we investigated whether these channels contribute to pH regulation. The intracellular pH (pHi) was monitored using BCECF in cultured alveolar epithelial cell monolayers and found to be 7.13 in nominally HCO3−-free solutions [at external pH (pHo) 7.4]. Cells were acid-loaded by the NH4+ prepulse technique, and the recovery was observed. Under conditions designed to eliminate the contribution of other transporters that alter pH, addition of 10 μM ZnCl2, a proton channel inhibitor, slowed recovery about twofold. In addition, the pHi minimum was lower, and the time to nadir was increased. Slowing of recovery by ZnCl2 was observed at pHo 7.4 and pHo 8.0 and in normal and high-K+ Ringer solutions. The observed rate of Zn2+-sensitive pHi recovery required activation of a small fraction of the available proton conductance. We conclude that proton channels contribute to pHi recovery after an acid load in rat alveolar epithelial cells. Addition of ZnCl2 had no effect on pHi in unchallenged cells, consistent with the expectation that proton channels are not open in resting cells. After inhibition of all known pH regulators, slow pHi recovery persisted, suggesting the existence of a yet-undefined acid extrusion mechanism in these cells.

1990 ◽  
Vol 68 (4) ◽  
pp. 1354-1359 ◽  
Author(s):  
R. K. Merchant ◽  
M. W. Peterson ◽  
G. W. Hunninghake

Alveolar epithelial cell injury and increased alveolar-capillary membrane permeability are important features of acute silicosis. To determine whether silica particles contribute directly to this increased permeability, we measured paracellular permeability of rat alveolar epithelium after exposure to silica, in vitro, using markers of the extracellular space. Silica (Minusil) markedly increased permeability in a dose- and time-dependent manner. This was not the result of cytolytic injury, because lactate dehydrogenase release from monolayers exposed to silica was not increased. Pretreatment of the silica with serum, charged dextrans, or aluminum sulfate blocked the increase in permeability. Scanning electron microscopy demonstrated adherence of the silica to the surface of the alveolar epithelial cells. Thus silica can directly increase permeability of alveolar epithelium.


2000 ◽  
Vol 278 (1) ◽  
pp. C1-C10 ◽  
Author(s):  
Thomas E. DeCoursey

Although alveolar epithelial cells were the first mammalian cells in which voltage-gated H+ currents were recorded, no specific function has yet been proposed. Here we consider whether H+ channels contribute to one of the main functions of the lung: CO2 elimination. This idea builds on several observations: 1) some cell membranes have low CO2permeability, 2) carbonic anhydrase is present in alveolar epithelium and contributes to CO2 extrusion by facilitating diffusion, 3) the transepithelial potential difference favors selective activation of H+ channels in apical membranes, and 4) the properties of H+ channels are ideally suited to the proposed role. H+channels open only when the electrochemical gradient for H+ is outward, imparting directionality to the diffusion process. Unlike previous facilitated diffusion models, [Formula: see text] and H+ recombine to form CO2 in the alveolar subphase. Rough quantitative considerations indicate that the proposed mechanism is plausible and indicate a significant capacity for CO2 elimination by the lung by this route. Fully activated alveolar H+ channels extrude acid equivalents at three times the resting rate of CO2 production.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098604
Author(s):  
Dong Yuan ◽  
Yuanshun Liu ◽  
Mengyu Li ◽  
Hongbin Zhou ◽  
Liming Cao ◽  
...  

Objective The primary aim of our study was to explore the mechanisms through which long non-coding RNA (lncRNA)-mediated sirtuin-1 (SIRT1) signaling regulates type II alveolar epithelial cell (AECII) senescence induced by a cigarette smoke-media suspension (CSM). Methods Pharmacological SIRT1 activation was induced using SRT2104 and senescence-associated lncRNA 1 (SAL-RNA1) was overexpressed. The expression of SIRT1, FOXO3a, p53, p21, MMP-9, and TIMP-1 in different groups was detected by qRT-PCR and Western blotting; the activity of SA-β gal was detected by staining; the binding of SIRT1 to FOXO3a and p53 gene transcription promoters was detected by Chip. Results We found that CSM increased AECII senescence, while SAL-RNA1 overexpression and SIRT1 activation significantly decreased levels of AECII senescence induced by CSM. Using chromatin immunoprecipitation, we found that SIRT1 bound differentially to transcriptional complexes on the FOXO3a and p53 promoters. Conclusion Our results suggested that lncRNA-SAL1-mediated SIRT1 signaling reduces senescence of AECIIs induced by CSM. These findings suggest a new therapeutic target to limit the irreversible apoptosis of lung epithelial cells in COPD patients.


2014 ◽  
Vol 307 (6) ◽  
pp. L449-L459 ◽  
Author(s):  
Seong Chul Kim ◽  
Thomas Kellett ◽  
Shaohua Wang ◽  
Miyuki Nishi ◽  
Nagaraja Nagre ◽  
...  

The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.


Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 83 ◽  
Author(s):  
Francesco Salton ◽  
Maria Volpe ◽  
Marco Confalonieri

Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung, which leads to extensive parenchymal scarring and death from respiratory failure. The most accepted hypothesis for IPF pathogenesis relies on the inability of the alveolar epithelium to regenerate after injury. Alveolar epithelial cells become apoptotic and rare, fibroblasts/myofibroblasts accumulate and extracellular matrix (ECM) is deposited in response to the aberrant activation of several pathways that are physiologically implicated in alveologenesis and repair but also favor the creation of excessive fibrosis via different mechanisms, including epithelial–mesenchymal transition (EMT). EMT is a pathophysiological process in which epithelial cells lose part of their characteristics and markers, while gaining mesenchymal ones. A role for EMT in the pathogenesis of IPF has been widely hypothesized and indirectly demonstrated; however, precise definition of its mechanisms and relevance has been hindered by the lack of a reliable animal model and needs further studies. The overall available evidence conceptualizes EMT as an alternative cell and tissue normal regeneration, which could open the way to novel diagnostic and prognostic biomarkers, as well as to more effective treatment options.


2003 ◽  
Vol 284 (2) ◽  
pp. L342-L349 ◽  
Author(s):  
Bethany B. Moore ◽  
Marc Peters-Golden ◽  
Paul J. Christensen ◽  
Vibha Lama ◽  
William A. Kuziel ◽  
...  

CC chemokine receptor 2 (CCR2) −/− mice are protected from experimental pulmonary fibrosis, a disease increasingly recognized as being mediated by dysfunctional interactions between epithelial cells and fibroblasts. We have sought to investigate the interactions between alveolar epithelial cells (AECs) and fibroblasts in these fibrosis-resistant (CCR2 −/−) and fibrosis-sensitive (CCR2 +/+) mice. AECs from CCR2 −/− mice suppress fibroblast proliferation more than AECs from CCR2 +/+ mice (77 vs. 43%). Exogenous administration of the CCR2 ligand monocyte chemoattractant protein-1 (MCP-1) to the fibroblast-AEC cocultures reverses the suppression mediated by CCR2 +/+ AECs but has no effect with CCR2 −/− AECs. MCP-1 regulates AEC function but not fibroblast function. AEC inhibition of fibroblast proliferation was mediated by a soluble, aspirin-sensitive factor. Accordingly, AECs from CCR2 −/− mice produce greater quantities of PGE2 than do AECs from CCR2 +/+ mice, and MCP-1 inhibits AEC-derived PGE2synthesis. Diminished PGE2 production by AECs results in enhanced fibroproliferation. Thus an important profibrotic mechanism of MCP-1/CCR2 interactions is to limit PGE2 production in AECs after injury, thus promoting fibrogenesis.


1998 ◽  
Vol 275 (1) ◽  
pp. C82-C92 ◽  
Author(s):  
Spencer I. Danto ◽  
Zea Borok ◽  
Xiao-Ling Zhang ◽  
Melissa Z. Lopez ◽  
Paryus Patel ◽  
...  

We investigated the effects of epidermal growth factor (EGF) on active Na+ absorption by alveolar epithelium. Rat alveolar epithelial cells (AEC) were isolated and cultivated in serum-free medium on tissue culture-treated polycarbonate filters. mRNA for rat epithelial Na+ channel (rENaC) α-, β-, and γ-subunits and Na+ pump α1- and β1-subunits were detected in day 4 monolayers by Northern analysis and were unchanged in abundance in day 5 monolayers in the absence of EGF. Monolayers cultivated in the presence of EGF (20 ng/ml) for 24 h from day 4 to day 5 showed an increase in both α1 and β1Na+ pump subunit mRNA but no increase in rENaC subunit mRNA. EGF-treated monolayers showed parallel increases in Na+ pump α1- and β1-subunit protein by immunoblot relative to untreated monolayers. Fixed AEC monolayers demonstrated predominantly membrane-associated immunofluorescent labeling with anti-Na+ pump α1- and β1-subunit antibodies, with increased intensity of cell labeling for both subunits seen at 24 h following exposure to EGF. These changes in Na+ pump mRNA and protein preceded a delayed (>12 h) increase in short-current circuit (measure of active transepithelial Na+transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases active Na+ resorption across AEC monolayers primarily via direct effects on Na+ pump subunit mRNA expression and protein synthesis, leading to increased numbers of functional Na+ pumps in the basolateral membranes.


1992 ◽  
Vol 262 (1) ◽  
pp. L32-L39 ◽  
Author(s):  
K. A. Wikenheiser ◽  
S. E. Wert ◽  
J. R. Wispe ◽  
M. Stahlman ◽  
M. D'Amore-Bruno ◽  
...  

Hyperoxia causes severe lung injury in association with altered expression of surfactant proteins and lipids. To test whether oxygen induces surfactant protein B (SP-B) expression in specific respiratory epithelial cells, adult B6C3F1 and FVB/N mice were exposed to room air or 95% oxygen for 1–5 days. Northern blot analysis demonstrated an 8- to 10-fold increase in SP-B mRNA after 3 days that was maintained thereafter. In situ hybridization localized SP-B mRNA to bronchial, bronchiolar, and alveolar epithelial cells. Hyperoxia was associated with increased SP-B mRNA, noted primarily in the bronchiolar epithelium and decreased SP-B mRNA in the alveolar epithelium. After 5 days, central regions of lung parenchyma were nearly devoid of SP-B mRNA, while SP-B mRNA was maintained in alveolar cell populations close to vascular structures. To determine whether increased bronchiolar expression of SP-B mRNA during hyperoxia was a specific response, the abundance of CC10 mRNA (a Clara cell protein) was assessed. CC10 mRNA was detected in tracheal, bronchial, and bronchiolar, but not alveolar epithelium and was decreased upon exposure to hyperoxia. Immunocytochemistry demonstrated that SP-B proprotein was detected in bronchial, bronchiolar, and alveolar epithelial cells with staining increased in the bronchial and bronchiolar epithelium upon exposure to hyperoxia. SP-B gene expression in the respiratory epithelium is regulated at a pretranslational level and occurs in a cell specific manner during hyperoxic injury in the mouse.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Radiom ◽  
M. Sarkis ◽  
O. Brookes ◽  
E. K. Oikonomou ◽  
A. Baeza-Squiban ◽  
...  

Abstract Pulmonary surfactant forms a sub-micrometer thick fluid layer that covers the surface of alveolar lumen and inhaled nanoparticles therefore come in to contact with surfactant prior to any interaction with epithelial cells. We investigate the role of the surfactant as a protective physical barrier by modeling the interactions using silica-Curosurf-alveolar epithelial cell system in vitro. Electron microscopy displays that the vesicles are preserved in the presence of nanoparticles while nanoparticle-lipid interaction leads to formation of mixed aggregates. Fluorescence microscopy reveals that the surfactant decreases the uptake of nanoparticles by up to two orders of magnitude in two models of alveolar epithelial cells, A549 and NCI-H441, irrespective of immersed culture on glass or air–liquid interface culture on transwell. Confocal microscopy corroborates the results by showing nanoparticle-lipid colocalization interacting with the cells. Our work thus supports the idea that pulmonary surfactant plays a protective role against inhaled nanoparticles. The effect of surfactant should therefore be considered in predictive assessment of nanoparticle toxicity or drug nanocarrier uptake. Models based on the one presented in this work may be used for preclinical tests with engineered nanoparticles.


2000 ◽  
Vol 88 (5) ◽  
pp. 1890-1896 ◽  
Author(s):  
Christine Clerici ◽  
Michael A. Matthay

Alveolar hypoxia occurs during ascent to high altitude but is also commonly observed in many acute and chronic pulmonary disorders. The alveolar epithelium is directly exposed to decreases in O2tension, but a few studies have evaluated the effects of hypoxia on alveolar cell function. The alveolar epithelium consists of two cell types: large, flat, squamous alveolar type I and cuboidal type II (ATII). ATII cells are more numerous and have a number of critical functions, including transporting ions and substrates required for many physiological processes. ATII cells express 1) membrane proteins used for supplying substrates required for cell metabolism and 2) ion transport proteins such as Na+channels and Na+-K+-ATPase, which are involved in the vectorial transport of Na+from the alveolar to interstitial spaces and therefore drive the resorption of alveolar fluid. This brief review focuses on gene expression regulation of glucose transporters and Na+transport proteins by hypoxia in alveolar epithelial cells. Cells exposed to severe hypoxia (0% or 3% O2) for 24 h upregulate the activity and expression of the glucose transporter GLUT-1, resulting in preservation of ATP content. Hypoxia-induced increases in GLUT-1 mRNA levels are due to O2deprivation and inhibition of oxidative phosphorylation. This regulation occurs at the transcriptional level through activation of a hypoxia-inducible factor. In contrast, hypoxia downregulates expression and activity of Na+channels and Na+-K+-ATPase in cultured alveolar epithelial cells. Hypoxia induces time- and concentration-dependent decreases of α-, β-, and γ-subunits of epithelial Na+channel mRNA and β1- and α1-subunits of Na+-K+-ATPase, effects that are completely reversed after reoxygenation. The mechanisms by which O2deprivation regulates gene expression of Na+transport proteins are not fully elucidated but likely involve the redox status of the cell. Thus hypoxia regulates gene expression of transport proteins in cultured alveolar epithelial type II cells differently, preserving ATP content.


Sign in / Sign up

Export Citation Format

Share Document