scholarly journals Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors

2010 ◽  
Vol 107 (25) ◽  
pp. 11626-11631 ◽  
Author(s):  
G. Toledo-Ortiz ◽  
E. Huq ◽  
M. Rodriguez-Concepcion
Marine Drugs ◽  
2015 ◽  
Vol 13 (8) ◽  
pp. 5334-5357 ◽  
Author(s):  
Takashi Kadono ◽  
Nozomu Kira ◽  
Kengo Suzuki ◽  
Osamu Iwata ◽  
Takeshi Ohama ◽  
...  

2014 ◽  
Vol 9 (8) ◽  
pp. e29248 ◽  
Author(s):  
M Águila Ruiz-Sola ◽  
Antía Rodríguez-Villalón ◽  
Manuel Rodríguez-Concepción

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhaojun Wang ◽  
Lin Zhang ◽  
Chen Dong ◽  
Jinggong Guo ◽  
Lifeng Jin ◽  
...  

Abstract Background Carotenoids play important roles in photosynthesis, hormone signaling, and secondary metabolism. Phytoene synthase (PSY) catalyzes the first step of the carotenoid biosynthetic pathway. In this study, we aimed to characterize the PSY genes in tobacco and analyze their function. Results In this study, we identified three groups of PSY genes, namely PSY1, PSY2, and PSY3, in four Nicotiana species; phylogenetic analysis indicated that these genes shared a high similarity with those in tomato but not with those in monocots such as rice and maize. The expression levels of PSY1 and PSY2 were observed to be highest in leaves compared to other tissues, and they could be elevated by treatment with certain phytohormones and exposure to strong light. No PSY3 expression was detected under these conditions. We constructed virus-induced PSY1 and PSY2 silencing in tobacco and found that the newly emerged leaves in these plants were characterized by severe bleaching and markedly decreased carotenoid and chlorophyll content. Thylakoid membrane protein complex levels in the gene-silenced plants were also less than those in the control plants. The chlorophyll fluorescence parameters such as Fv/Fm, ΦPSII, qP, and NPQ, which reflect photosynthetic system activities, of the gene-silenced plants were also significantly decreased. We further performed RNA-Seq and metabonomics analysis between gene-silenced tobacco and control plants. RNA-Seq results showed that abiotic stress, isoprenoid compounds, and amino acid catabolic processes were upregulated, whereas the biosynthesis of cell wall components was downregulated. Metabolic analysis results were consistent with the RNA-Seq. We also found the downstream genes in carotenoid biosynthesis pathways were upregulated, and putative transcription factors that regulate carotenoid biosynthesis were identified. Conclusions Our results suggest that PSY can regulate carotenoid contents not only by controlling the first biosynthesis step but also by exerting effects on the expression of downstream genes, which would thereby affect photosynthetic activity. Meanwhile, PSY may affect other processes such as amino acid catabolism and cell wall organization. The information we report here may aid further research on PSY genes and carotenoid biosynthesis.


1992 ◽  
Author(s):  
John Shaw ◽  
Arieh Rosner ◽  
Thomas Pirone ◽  
Benjamin Raccah ◽  
Yehezkiel Antignus

In this research we have studied the molecular biology of carotenoid biosynthesis in tomato. The investigations focused on the genes Pds and Psy, encoding desaturase and phytoene synthase, respectively, which are key enzymes in the biosynthetic pathway of lycopene and b-carotene. In addition, we have investigated the genes for lycopene cyclase. We have cloned from tomato and characterized the cDNA of CrtL-e, which encodes the lycopene e-cyclase, and analyzed its expression during fruit development. The results establish a paradigm for the regulation of carotenoid pigment biosynthesis during the ripening process of fruits. It is concluded that transcriptional regulation of genes that encode carotenoid-biosynthesis enzymes is the major mechanism that governs specific pigment accumulation. During the ripening of tomato fruits transcription of the genes encoding the enzymes phytoene synthase and phytoene desaturase is up-regulated, while the transcription of the genes for both lycopene cyclases decreases and thus the conversion of lycopene to subsequent carotenoids is inhibited. These findings support the working hypothesis of the molecular approach to manipulating carotenogenesis by altering gene expression in transgenic plants, and offer obvious strategies to future application in agriculture. The molecular and physiological knowledge on carotenogenesis gained in this project, suggest a concept for manipulating gene expression that will alter carotenoid composition in fruits and flowers.


1993 ◽  
Author(s):  
Joseph Hirschberg ◽  
Gloria A. Moore

In this research we have studied the molecular biology of carotenoid biosynthesis in tomato. The investigations focused on the genes Pds and Psy, encoding desaturase and phytoene synthase, respectively, which are key enzymes in the biosynthetic pathway of lycopene and b-carotene. In addition, we have investigated the genes for lycopene cyclase. We have cloned from tomato and characterized the cDNA of CrtL-e, which encodes the lycopene e-cyclase, and analyzed its expression during fruit development. The results establish a paradigm for the regulation of carotenoid pigment biosynthesis during the ripening process of fruits. It is concluded that transcriptional regulation of genes that encode carotenoid-biosynthesis enzymes is the major mechanism that governs specific pigment accumulation. During the ripening of tomato fruits transcription of the genes encoding the enzymes phytoene synthase and phytoene desaturase is up-regulated, while the transcription of the genes for both lycopene cyclases decreases and thus the conversion of lycopene to subsequent carotenoids is inhibited. These findings support the working hypothesis of the molecular approach to manipulating carotenogenesis by altering gene expression in transgenic plants, and offer obvious strategies to future application in agriculture. The molecular and physiological knowledge on carotenogenesis gained in this project, suggest a concept for manipulating gene expression that will alter carotenoid composition in fruits and flowers.


2014 ◽  
Vol 33 (8) ◽  
pp. 1307-1321 ◽  
Author(s):  
Zoran Jeknić ◽  
Stevan Jeknić ◽  
Slađana Jevremović ◽  
Angelina Subotić ◽  
Tony H. H. Chen

2000 ◽  
Vol 278 (5) ◽  
pp. F784-F791 ◽  
Author(s):  
Olugbenga A. Adebanjo ◽  
Gopa Biswas ◽  
Baljit S. Moonga ◽  
Hindupur K. Anandatheerthavarada ◽  
Li Sun ◽  
...  

We report the first biochemical and functional characterization of inositol trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) in the nuclear membrane of bone-forming (MC3T3-E1) osteoblasts. Intact nuclei fluoresced intensely with anti-RyR (Ab34) and anti-IP3R (Ab40) antisera in a typically peripheral nuclear membrane pattern. Isolated nuclear membranes were next subjected to SDS-PAGE and blotted with isoform-specific anti-receptor antisera, notably Ab40, anti-RyR-1, anti-RyR-2 (Ab129), and anti-RyR-3 (Ab180). Only anti-RyR-1 and Ab40 showed bands corresponding, respectively, to full-length RyR-1 (∼500 kDa) and IP3R-1 (∼250 kDa). Band intensity was reduced by just ∼20% after brief tryptic proteolysis of intact nuclei; this confirmed that isolated nuclear membranes were mostly free of endoplasmic reticular contaminants. Finally, the nucleoplasmic Ca2+ concentration ([Ca2+]np) was measured in single nuclei by using fura-dextran. The nuclear envelope was initially loaded with Ca2+ via Ca2+-ATPase activation (1 mM ATP and ∼100 nM Ca2+). Adequate Ca2+ loading was next confirmed by imaging the nuclear envelope (and nucleoplasm). Exposure of Ca2+-loaded nuclei to IP3 or cADP ribose resulted in a rapid and sustained [Ca2+]np elevation. Taken together, the results provide complementary evidence for nucleoplasmic Ca2+ influx in osteoblasts through nuclear membrane-resident IP3Rs and RyRs. Our findings may conceivably explain the direct regulation of osteoblastic gene expression by hormones that use the IP3-Ca2+pathway.


Sign in / Sign up

Export Citation Format

Share Document