iris germanica
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 26)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 295 ◽  
pp. 110844
Author(s):  
Zhuping Fan ◽  
Yike Gao ◽  
Rong Liu ◽  
Shiting Wang ◽  
Yanchao Guo ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1702
Author(s):  
Yang Lin ◽  
Yunan Jiao ◽  
Meifang Zhao ◽  
Guangjun Wang ◽  
Deming Wang ◽  
...  

Due to manganese mining and slag accumulation, the geological structure of the wetland polluted by heavy metals in Xiangtan Manganese Mine area was seriously damaged, hence biodiversity loss, severe soil, and water pollution, as well as serious heavy metal pollution to food, vegetables, and other natural sources. In order to restore the ecological environment of the mining area, in 2015, the ecological restoration test of heavy metal polluted wetlands in the mining area was carried out. The results showed that the Mn content of different parts of Koelreuteria paniculata root from high to low order: fine root > small root > medium root > large root. The Mn content of different parts of Elaeocarpus decipiens root from high to low order: large root > medium root > small root > fine root. The order of Mn content in plants of the wetland restoration from high to low is as follows: Canna warscewiezii > Thalia dealbata > Boehmeria > Pontederia cordata > Typha orientalis > Nerium oleander > Softstem bulrush > Iris germanica > Acorus calamus > Arundo donax > Phragmites australis; The order of Internal Cu content from high to low is as follows: Acorus calamus > Thalia dealbata > Softstem bulrush > Canna warscewiezii > Typha orientalis > Arundo donax > Boehmeria > Iris germanica > Pontederia cordata > Nerium oleander > Phragmites australis; Zn content from high to low order is as follows: Canna warscewiezii > Acorus calamus > Thalia dealbata > Typha orientalis > Pontederia cordata > Arundo donax > Softstem bulrush > Iris germanica > Boehmeria > Phragmites australis > Nerium oleander; Cd content from high to low order is as follows: Phragmites australis > Softstem bulrush > Thalia dealbata > Nerium oleander > Boehmeria > Canna warscewiezii > Acorus calamus > Iris germanica > Typha orientalis > Pontederia cordata > Arundo donax. The results of this study have provided a theoretical basis and decision-making reference for the evaluation of heavy metals polluted wetland restoration, protection, and reconstruction effects and the selection of ecological restoration modes.


2021 ◽  
Vol 22 (16) ◽  
pp. 8793
Author(s):  
Yinjie Wang ◽  
Yongxia Zhang ◽  
Qingquan Liu ◽  
Ting Zhang ◽  
Xinran Chong ◽  
...  

The family of B-box (BBX) transcription factors contains one or two B-BOX domains and sometimes also features a highly conserved CCT domain, which plays important roles in plant growth, development and stress response. Nevertheless, no systematic study of the BBX gene family in Iris germanica L. has been undertaken. In this study, a set of six BBX TF family genes from I. germanica was identified based on transcriptomic sequences, and clustered into three clades according to phylogenetic analysis. A transient expression analysis revealed that all six BBX proteins were localized in the nucleus. A yeast one-hybrid assay demonstrated that IgBBX3 has transactivational activity, while IgBBX1, IgBBX2, IgBBX4, and IgBBX5 have no transcriptional activation ability. The transcript abundance of IgBBXs in different tissues was divided into two major groups. The expression of IgBBX1, IgBBX2, IgBBX3 and IgBBX5 was higher in leaves, whereas IgBBX4 and IgBBX6 was higher in roots. The stress response patterns of six IgBBX were detected under phytohormone treatments and abiotic stresses. The results of this study lay the basis for further research on the functions of BBX gene family members in plant hormone and stress responses, which will promote their application in I. germanica breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingwei Zhang ◽  
Dazhuang Huang ◽  
Xiaojie Zhao ◽  
Man Zhang

AbstractIris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: ‘Little Dream’ > ‘Music Box’ > ‘X’Brassie’ > ‘Blood Stone’ > ‘Cherry Garden’ > ‘Memory of Harvest’ > ‘Immortality’ > ‘White and Gold’ > ‘Tantara’ > ‘Clarence’. Using the high-drought-resistant cultivar ‘Little Dream’ as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar ‘Little Dream’ under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.


2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Maryam Iranzadasl ◽  
Parvin Pasalar ◽  
Mohammad Kamalinejad ◽  
Mohammad Javad Mousavi

Background: Melanoma is the leading cause of 80% of skin cancer worldwide due to its high proliferation rate, metastatic nature, and limited effective therapies. Given the rapid increase in its incidence compared to other skin cancers, new therapeutic agents are needed to control the disease. Scientists are interested in medicinal plants due to their anticancer properties. The rhizomes of the Iris germanica L., known as “Irsa”, is one of the herbs used in traditional Persian medicine for the treatment of various skin cancers. Objectives: This study aimed at investigating the cytotoxic effects of Iris germanica on A375 melanoma and AGO-1522 normal human fibroblast cell lines for the first time. Methods: The ethanolic extract was prepared by the maceration method. Cell viability and cytotoxic activities were assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometric assay, using annexin V/propidium iodide (PI) staining. Results: IC50 values were estimated for the A375 melanoma and the AGO-1522 normal cell lines. We revealed that the IC50 for the A375 melanoma was 0.0438 mg/mL and for the AGO-1522 normal cell line was 0.8494 mg/mL after 48 hours of treatment. Furthermore, flow cytometry analysis illustrated that 0.125 mg/mL of the Iris germanica extract could lead to 55.24% apoptosis of the A375 melanoma cell line. The same concentration of the Iris germanica extracts only lead to 8.76% apoptosis in the AGO-1522 cell line. Conclusions: Iris germanica extract has considerable cytotoxic effects on the human melanoma cell line. Further studies are required to demonstrate the therapeutic effects of Iris germanica on melanoma cancer.


Author(s):  
Ioana CRIȘAN

Dark septate endophytes (DSE) are a group of fungi from phylum Ascomycota that develop inside healthy root tissue of a wide range of plants from diverse habitats. They play a role in nutrient acquisition and survival of their hosts in limiting conditions. Aim of this research was to identify the seasonal occurrence of dark septate endophytes across a cultivar gradient in urban conditions from Cluj-Napoca, Romania. Root samples from six Iris germanica cultivars were collected in spring and autumn. Microscopic assessment was conducted on 2160 root segments. Average DSE frequency in roots of Iris germanica was 14.58%. Analysis of variance revealed that influence exercised by the cultivar was not significant (p=0.37), but the interaction between cultivar and phenophase explained 53.97% of overall variance. DSE were identified in all six cultivars, indicating either to a similar susceptibility of the host genotype or lack of specificity of the fungal endophyte. Unravelling the functional roles of these fungi could contribute to a better understating of plant-fungi interactions in anthropic environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinjie Wang ◽  
Yongxia Zhang ◽  
Qingquan Liu ◽  
Haiying Tong ◽  
Ting Zhang ◽  
...  

AbstractIris germanica L. is a perennial herbaceous plant that has been widely cultivated worldwide and is popular for its elegant and vibrantly colorful flowers. Selection of appropriate reference genes is the prerequisite for accurate normalization of target gene expression by quantitative real-time PCR. However, to date, the most suitable reference genes for flowering stages have not been elucidated in I. germanica. In this study, eight candidate reference genes were examined for the normalization of RT-qPCR in three I. germanica cultivars, and their stability were evaluated by four different algorithms (GeNorm, NormFinder, BestKeeper, and Ref-finder). The results revealed that IgUBC and IgGAPDH were the most stable reference genes in ‘00246’ and ‘Elizabeth’, and IgTUB and IgUBC showed stable expression in ‘2010200’. IgUBC and IgGAPDH were the most stable in all samples, while IgUBQ showed the least stability. Finally, to validate the reliability of the selected reference genes, the expression patterns of IgFT (Flowering Locus T gene) was analyzed and emphasized the importance of appropriate reference gene selection. This work presented the first systematic study of reference genes selection during flower bud development and provided guidance to research of the molecular mechanisms of flowering stages in I. germanica.


2021 ◽  
Vol 281 ◽  
pp. 109960
Author(s):  
Zipeng Zhao ◽  
Tongyin Li ◽  
Yufei Cheng ◽  
Feijian Wang ◽  
Xiaojie Zhao

Author(s):  
Bahareh Sadat Yousefsani ◽  
Motahareh Boozari ◽  
Kobra Shirani ◽  
Amirhossein Jamshidi ◽  
Majid Dadmehr

Abstract Objectives Iris germanica L. is a medicinal plant, which has a long history of uses, mainly in medieval Persia and many places worldwide for the management of a wide variety of diseases. In this study, we aimed to review ethnopharmacological applications in addition to phytochemical and pharmacological properties of I. germanica. Key findings Ethnomedical uses of I. germanica have been reported from many countries such as China, Pakistan, India, Iran and Turkey. The medicinal part of I. germanica is the rhizome and the roots. Based on phytochemical investigations, different bioactive compounds, including flavonoids, triterpenes, sterols, phenolics, ceramides and benzoquinones, have been identified in its medicinal parts. Current pharmacological studies represent that the plant possesses several biological and therapeutic effects, including neuroprotective, hypoglycaemic, hypolipidaemic, antimicrobial, antioxidant, antiproliferative, anti-inflammatory, antiplasmodial, antifungal, immunomodulatory, cytotoxic and antimutagenic effects. Summary Although the majority of preclinical studies reported various pharmacological activities of this plant, however, sufficient clinical trials are not currently available. Therefore, to draw a definitive conclusion about the efficacy and therapeutic activities of I. germanica and its bioactive compounds, further clinical and experimental studies are required. Moreover, it is necessary to focus on the pharmacokinetic and safety studies on the extracts of I. germanica.


Sign in / Sign up

Export Citation Format

Share Document