scholarly journals Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals

2011 ◽  
Vol 108 (33) ◽  
pp. 13705-13709 ◽  
Author(s):  
R. Rabol ◽  
K. F. Petersen ◽  
S. Dufour ◽  
C. Flannery ◽  
G. I. Shulman
2018 ◽  
Vol 315 (3) ◽  
pp. E386-E393 ◽  
Author(s):  
Corin O. Miller ◽  
Xiaodong Yang ◽  
Ku Lu ◽  
Jin Cao ◽  
Kithsiri Herath ◽  
...  

Fructose consumption in humans and animals has been linked to enhanced de novo lipogenesis, dyslipidemia, and insulin resistance. Hereditary deficiency of ketohexokinase (KHK), the first enzymatic step in fructose metabolism, leads to essential fructosuria in humans, characterized by elevated levels of blood and urinary fructose following fructose ingestion but is otherwise clinically benign. To address whether KHK deficiency is associated with altered glucose and lipid metabolism, a Khk knockout (KO) mouse line was generated and characterized. NMR spectroscopic analysis of plasma following ingestion of [6-13C] fructose revealed striking differences in biomarkers of fructose metabolism. Significantly elevated urine and plasma 13C-fructose levels were observed in Khk KO vs. wild-type (WT) control mice, as was reduced conversion of 13C-fructose into plasma 13C-glucose and 13C-lactate. In addition, the observation of significant levels of fructose-6-phosphate in skeletal muscle tissue of Khk KO, but not WT, mice suggests a potential mechanism, whereby fructose is metabolized via muscle hexokinase in the absence of KHK. Khk KO mice on a standard chow diet displayed no metabolic abnormalities with respect to ambient glucose, glucose tolerance, body weight, food intake, and circulating trigylcerides, β-hydroxybutyrate, and lactate. When placed on a high-fat and high-fructose (HF/HFruc) diet, Khk KO mice had markedly reduced liver weight, triglyceride levels, and insulin levels. Together, these results suggest that Khk KO mice may serve as a good model for essential fructosuria in humans and that inhibition of KHK offers the potential to protect from diet-induced hepatic steatosis and insulin resistance.


2016 ◽  
Vol 36 (16) ◽  
pp. 2168-2181 ◽  
Author(s):  
Lucie Popineau ◽  
Lucille Morzyglod ◽  
Nadège Carré ◽  
Michèle Caüzac ◽  
Pascale Bossard ◽  
...  

A long-standing paradox in the pathophysiology of metabolic diseases is the selective insulin resistance of the liver. It is characterized by a blunted action of insulin to reduce glucose production, contributing to hyperglycemia, whilede novolipogenesis remains insulin sensitive, participating in turn to hepatic steatosis onset. The underlying molecular bases of this conundrum are not yet fully understood. Here, we established a model of selective insulin resistance in mice by silencing an inhibitor of insulin receptor catalytic activity, the growth factor receptor binding protein 14 (Grb14) in liver. Indeed, Grb14 knockdown enhanced hepatic insulin signaling but also dramatically inhibitedde novofatty acid synthesis. In the liver of obese and insulin-resistant mice, downregulation of Grb14 markedly decreased blood glucose and improved liver steatosis. Mechanistic analyses showed that upon Grb14 knockdown, the release of p62/sqstm1, a partner of Grb14, activated the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2), which in turn repressed the lipogenic nuclear liver X receptor (LXR). Our study reveals that Grb14 acts as a new signaling node that regulates lipogenesis and modulates insulin sensitivity in the liver by acting at a crossroad between the insulin receptor and the p62-Nrf2-LXR signaling pathways.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kay H. M. Roumans ◽  
Lucas Lindeboom ◽  
Pandichelvam Veeraiah ◽  
Carlijn M. E. Remie ◽  
Esther Phielix ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1623 ◽  
Author(s):  
Filip Vlavcheski ◽  
Evangelia Tsiani

Elevated blood free fatty acids (FFAs), as seen in obesity, impair muscle insulin action leading to insulin resistance and Type 2 diabetes mellitus. Serine phosphorylation of the insulin receptor substrate (IRS) is linked to insulin resistance and a number of serine/threonine kinases including JNK, mTOR and p70 S6K have been implicated in this process. Activation of the energy sensor AMP-activated protein kinase (AMPK) increases muscle glucose uptake, and in recent years AMPK has been viewed as an important target to counteract insulin resistance. We reported recently that rosemary extract (RE) increased muscle cell glucose uptake and activated AMPK. However, the effect of RE on FFA-induced muscle insulin resistance has never been examined. In the current study, we investigated the effect of RE in palmitate-induced insulin resistant L6 myotubes. Exposure of myotubes to palmitate reduced the insulin-stimulated glucose uptake, increased serine phosphorylation of IRS-1, and decreased the insulin-stimulated phosphorylation of Akt. Importantly, exposure to RE abolished these effects and the insulin-stimulated glucose uptake was restored. Treatment with palmitate increased the phosphorylation/activation of JNK, mTOR and p70 S6K whereas RE completely abolished these effects. RE increased the phosphorylation of AMPK even in the presence of palmitate. Our data indicate that rosemary extract has the potential to counteract the palmitate-induced muscle cell insulin resistance and further studies are required to explore its antidiabetic properties.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Andre Sarmento-Cabral ◽  
Mercedes del Rio-Moreno ◽  
Mari C Vazquez-Borrego ◽  
Mariyah Mahmood ◽  
Elena Gutierrez-Casado ◽  
...  

Abstract GH dysregulation contributes to the development of non-alcoholic fatty liver disease (NAFLD), however debate remains as to the relative contribution of the direct vs indirect effects of GH, via IGF1. Mouse models with congenital, liver-specific knockout of the GHR, JAK2 or STAT5, as adults exhibit steatosis, glucose intolerance, insulin resistance and white adipose tissue (WAT) lipolysis. It is believed that fatty liver is due to the dramatic reduction in circulating IGF1 altering systemic metabolism, due to loss of the insulin-like effects of IGF1 and the loss of IGF1 negative feedback to the pituitary leading to a rise in GH that promotes systemic insulin resistance and WAT lipolysis shifting the flux of fatty acids to the liver. In addition, low IGF1/high GH alters the development of other metabolically relevant tissues, which could indirectly contribute to the liver phenotype observed with congenital loss of hepatic GH signaling. To directly test the actions of GH on adult hepatocyte function, we developed a mouse model of adult-onset, hepatocyte-specific knockdown of the GHR (aHepGHRkd; 12 week-old, GHRfl/fl mice treated with AAV8-TBGp-Cre). aHepGHRkd enhanced hepatic de novo lipogenesis (DNL), rapidly leading to steatosis in males, but not females. In males, enhanced DNL and steatosis was sustained with age and associated with hepatocyte ballooning, inflammation and mild fibrosis. These changes occurred independent of severe systemic insulin resistance and WAT lipolysis, although the aHepGHRkd mice exhibit low IGF1/high GH similar to that of congenital models. To directly test the role of hepatocyte GHR signaling, independent of changes in IGF1, aHepGHRkd mice were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes (AAV8-TBGp-rIGF1). Mice were fed standard chow diet and tissues collected 8m post-AAV. IGF1 replacement elevated plasma IGF1 in aHepGHRkd mice, resulting in a reduction in plasma GH and pituitary expression of Gh, Ghrhr and Ghsr, indicating negative feedback of IGF1 was restored. In male aHepGHRkd mice, IGF1 replacement reduced insulin and whole body lipid utilization and increased WAT, however it did not reduce steatosis or alter hepatic fatty acid composition indicative of DNL and had minimal effects on liver injury markers. RNAseq analysis of liver extracts showed IGF1 replacement also had no major impact on the differentially expressed genes observed after aHepGHRkd. These results demonstrate that steatosis, DNL and liver injury observed in male aHepGHRkd mice are autonomous of IGF1. Despite the fact that hepatic GHR protein levels were not detectable in both female and male aHepGHRkd mice, females maintained moderate levels of IGF1 and were protected from steatosis. The mechanism by which female mice are protected remains to be elucidated, however is consistent with clinical data indicating pre-menopausal women are resistance to NAFLD.


2020 ◽  
Vol 21 (11) ◽  
pp. 4144 ◽  
Author(s):  
Pia Fahlbusch ◽  
Birgit Knebel ◽  
Tina Hörbelt ◽  
David Monteiro Barbosa ◽  
Aleksandra Nikolic ◽  
...  

Fatty liver occurs from simple steatosis with accumulated hepatic lipids and hepatic insulin resistance to severe steatohepatitis, with aggravated lipid accumulation and systemic insulin resistance, but this progression is still poorly understood. Analyses of hepatic gene expression patterns from alb-SREBP-1c mice with moderate, or aP2-SREBP-1c mice with aggravated, hepatic lipid accumulation revealed IGFBP2 as key nodal molecule differing between moderate and aggravated fatty liver. Reduced IGFBP2 expression in aggravated fatty liver was paralleled with promoter hypermethylation, reduced hepatic IGFBP2 secretion and IGFBP2 circulating in plasma. Physiologically, the decrease of IGFBP2 was accompanied with reduced fatty acid oxidation and increased de novo lipogenesis potentially mediated by IGF1 in primary hepatocytes. Furthermore, methyltransferase and sirtuin activities were enhanced. In humans, IGFBP2 serum concentration was lower in obese men with non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) compared to non-obese controls, and liver fat reduction by weight-loss intervention correlated with an increase of IGFBP2 serum levels. In conclusion, hepatic IGFBP2 abundance correlates to its circulating level and is related to hepatic energy metabolism and de novo lipogenesis. This designates IGFBP2 as non-invasive biomarker for fatty liver disease progression and might further provide an additional variable for risk prediction for pathogenesis of fatty liver in diabetes subtype clusters.


2009 ◽  
Vol 55 (3) ◽  
pp. 425-438 ◽  
Author(s):  
Javier A Menendez ◽  
Alejandro Vazquez-Martin ◽  
Francisco Jose Ortega ◽  
Jose Manuel Fernandez-Real

Abstract Background: An emerging paradigm supports the notion that deregulation of fatty acid synthase (FASN)-catalyzed de novo FA biogenesis could play a central role in the pathogenesis of metabolic diseases sharing the hallmark of insulin-resistance. Content: We reviewed pharmacological and genetic alterations of FASN activity that have been shown to significantly influence energy expenditure rates, fat mass, insulin sensitivity, and cancer risk. This new paradigm proposes that insulin-resistant conditions such as obesity, type 2 diabetes, and cancer arise from a common FASN-driven “lipogenic state”. An important question then is whether the development or the progression of insulin-related metabolic disorders can be prevented or reversed by the modulation of FASN status. If we accept the paradigm of FASN dysfunction as a previously unrecognized link between insulin resistance, type 2 diabetes, and cancer, the use of insulin sensitizers in parallel with forthcoming FASN inhibitors should be a valuable therapeutic approach that, in association with lifestyle interventions, would concurrently improve energy-flux status, ameliorate insulin sensitivity, and alleviate the risk of lipogenic carcinomas. Conclusions: Although the picture is currently incomplete and researchers in the field have plenty of work ahead, the latest clinical and experimental evidence that we discuss illuminates a functional and drug-modifiable link that connects FASN-driven endogenous FA biosynthesis, insulin action, and glucose homeostasis in the natural history of insulin-resistant pathologies.


2014 ◽  
Vol 3 (9) ◽  
pp. 823-833 ◽  
Author(s):  
Jennifer Taher ◽  
Christopher L. Baker ◽  
Carmelle Cuizon ◽  
Hassan Masoudpour ◽  
Rianna Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document