scholarly journals Attenuation of Free Fatty Acid-Induced Muscle Insulin Resistance by Rosemary Extract

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1623 ◽  
Author(s):  
Filip Vlavcheski ◽  
Evangelia Tsiani

Elevated blood free fatty acids (FFAs), as seen in obesity, impair muscle insulin action leading to insulin resistance and Type 2 diabetes mellitus. Serine phosphorylation of the insulin receptor substrate (IRS) is linked to insulin resistance and a number of serine/threonine kinases including JNK, mTOR and p70 S6K have been implicated in this process. Activation of the energy sensor AMP-activated protein kinase (AMPK) increases muscle glucose uptake, and in recent years AMPK has been viewed as an important target to counteract insulin resistance. We reported recently that rosemary extract (RE) increased muscle cell glucose uptake and activated AMPK. However, the effect of RE on FFA-induced muscle insulin resistance has never been examined. In the current study, we investigated the effect of RE in palmitate-induced insulin resistant L6 myotubes. Exposure of myotubes to palmitate reduced the insulin-stimulated glucose uptake, increased serine phosphorylation of IRS-1, and decreased the insulin-stimulated phosphorylation of Akt. Importantly, exposure to RE abolished these effects and the insulin-stimulated glucose uptake was restored. Treatment with palmitate increased the phosphorylation/activation of JNK, mTOR and p70 S6K whereas RE completely abolished these effects. RE increased the phosphorylation of AMPK even in the presence of palmitate. Our data indicate that rosemary extract has the potential to counteract the palmitate-induced muscle cell insulin resistance and further studies are required to explore its antidiabetic properties.

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 167
Author(s):  
Danja J. Den Hartogh ◽  
Filip Vlavcheski ◽  
Adria Giacca ◽  
Rebecca E. K. MacPherson ◽  
Evangelia Tsiani

Elevated blood free fatty acids (FFAs), as seen in obesity, impair insulin action leading to insulin resistance and Type 2 diabetes mellitus. Several serine/threonine kinases including JNK, mTOR, and p70 S6K cause serine phosphorylation of the insulin receptor substrate (IRS) and have been implicated in insulin resistance. Activation of AMP-activated protein kinase (AMPK) increases glucose uptake, and in recent years, AMPK has been viewed as an important target to counteract insulin resistance. We reported previously that carnosic acid (CA) found in rosemary extract (RE) and RE increased glucose uptake and activated AMPK in muscle cells. In the present study, we examined the effects of CA on palmitate-induced insulin-resistant L6 myotubes and 3T3L1 adipocytes. Exposure of cells to palmitate reduced the insulin-stimulated glucose uptake, GLUT4 transporter levels on the plasma membrane, and Akt activation. Importantly, CA attenuated the deleterious effect of palmitate and restored the insulin-stimulated glucose uptake, the activation of Akt, and GLUT4 levels. Additionally, CA markedly attenuated the palmitate-induced phosphorylation/activation of JNK, mTOR, and p70S6K and activated AMPK. Our data indicate that CA has the potential to counteract the palmitate-induced muscle and fat cell insulin resistance.


Author(s):  
Hesham Shamshoum ◽  
Filip Vlavcheski ◽  
Rebecca E.K. MacPherson ◽  
Evangelia Tsiani

Impaired action of insulin in skeletal muscle, termed insulin resistance, leads to increased blood glucose levels resulting in compensatory increase in insulin levels. The elevated blood glucose and insulin levels exacerbate insulin resistance and contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). In previous studies we found attenuation of free fatty acid-induced muscle cell insulin resistance by rosemary extract (RE). In the present study we investigated the effects of RE on high glucose (HG) and high insulin (HI)-induced muscle cell insulin resistance. Exposure of L6 myotubes to 25 mM glucose and 100 nM insulin for 24 h, to mimic hyperglycemia and hyperinsulinemia, abolished the acute insulin-stimulated glucose uptake, increased the serine phosphorylation of IRS-1 and the phosphorylation/ activation of mTOR and p70S6K. Treatment with RE significantly improved the insulin-stimulated glucose uptake and increased the acute insulin-stimulated tyrosine phosphorylation while reduced the HG+HI-induced serine phosphorylation of IRS-1 and phosphorylation of mTOR and p70S6K. Additionally, treatment with RE significantly increased the phosphorylation of AMPK, its downstream effector ACC and the plasma membrane GLUT4 levels. Our data indicate a potential of RE to counteract muscle cell insulin resistance and more studies are required to investigate its effectiveness in vivo. Novelty: • Rosemary extract (RE) phosphorylated muscle cell AMPK and ACC under both normal and high glucose (HG)/high insulin (HI) conditions. • The HG/HI-induced serine phosphorylation of IRS-1 and activation of mTOR and p70S6K were attenuated by RE. • RE increased the insulin-stimulated glucose uptake by enhancing GLUT4 glucose transporter translocation to plasma membrane.


2006 ◽  
Vol 100 (5) ◽  
pp. 1467-1474 ◽  
Author(s):  
Jong Sam Lee ◽  
Srijan K. Pinnamaneni ◽  
Su Ju Eo ◽  
In Ho Cho ◽  
Jae Hwan Pyo ◽  
...  

Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.


2020 ◽  
Author(s):  
Audrey Caron ◽  
Fozia Ahmed ◽  
Vian Peshdary ◽  
Léa Garneau ◽  
Ella Atlas ◽  
...  

AbstractBackgroundExposure to coplanar polychlorinated biphenyls (PCBs) is linked to the development of insulin resistance. Previous studies suggested that PCB126 alters muscle mitochondrial function through an indirect mechanism. Since PCBs are stored in fat, we hypothesized that PCB126 alters adipokine secretion, which in turn affects muscle metabolism.ObjectivesThe objectives of this study were: 1) To study the impacts of PCB126 exposure on adipocyte cytokine/adipokine secretion; 2) To determine whether adipocyte-derived factors alter glucose metabolism and mitochondrial function in myotubes when exposed to PCB126; 3) To determine whether pre-established insulin resistance alters the metabolic responses of adipocytes exposed to PCB126 and the communication between adipocytes and myotubes.Method3T3-L1 adipocytes were exposed to PCB126 (1-100 nM) in two insulin sensitivity conditions (insulin sensitive (IS) and insulin resistant (IR) adipocytes), followed by the measurement of secreted adipokines, mitochondrial function and insulin-stimulated glucose uptake. Communication between adipocytes and myotubes was reproduced by exposing C2C12 or mouse primary myotubes to conditioned medium (CM) derived from IS or IR 3T3-L1 adipocytes exposed to PCB126. Mitochondrial function and insulin-stimulated glucose uptake were then determined in myotubes.ResultsPCB126 significantly increased adipokine (adiponectin, IL-6, MCP-1, TNF-α) secretion and decreased mitochondrial function, glucose uptake and glycolysis in IR but not in IS 3T3-L1 adipocytes. Altered energy metabolism in IR 3T3-L1 adipocytes was linked to decreased phosphorylation of AMP-activated protein kinase (p-AMPK) and increased superoxide dismutase 2 levels, an enzyme involved in reactive oxygen species detoxification. Exposure of myotubes to CM from PCB126-treated IR adipocytes decreased glucose uptake, without altering glycolysis or mitochondrial function. Interestingly, p-AMPK levels were increased rather than decreased in myotubes exposed to the CM of PCB126-treated IR adipocytes.ConclusionTaken together, these data suggest that increased adipokine secretion from IR adipocytes exposed to PCB126 may explain impaired glucose uptake in myotubes.


2020 ◽  
Vol 21 (14) ◽  
pp. 4900
Author(s):  
Danja J. Den Hartogh ◽  
Filip Vlavcheski ◽  
Adria Giacca ◽  
Evangelia Tsiani

Insulin resistance, a main characteristic of type 2 diabetes mellitus (T2DM), is linked to obesity and excessive levels of plasma free fatty acids (FFA). Studies indicated that significantly elevated levels of FFAs lead to skeletal muscle insulin resistance, by dysregulating the steps in the insulin signaling cascade. The polyphenol resveratrol (RSV) was shown to have antidiabetic properties but the exact mechanism(s) involved are not clearly understood. In the present study, we examined the effect of RSV on FFA-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal myotubes were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to FFA palmitate decreased the insulin-stimulated glucose uptake, indicating insulin resistance. Palmitate increased ser307 (131% ± 1.84% of control, p < 0.001) and ser636/639 (148% ± 10.1% of control, p < 0.01) phosphorylation of IRS-1, and increased the phosphorylation levels of mTOR (174% ± 15.4% of control, p < 0.01) and p70 S6K (162% ± 20.2% of control, p < 0.05). Treatment with RSV completely abolished these palmitate-induced responses. In addition, RSV increased the activation of AMPK and restored the insulin-mediated increase in (a) plasma membrane GLUT4 glucose transporter levels and (b) glucose uptake. These data suggest that RSV has the potential to counteract the FFA-induced muscle insulin resistance.


Endocrinology ◽  
2011 ◽  
Vol 152 (10) ◽  
pp. 3622-3627 ◽  
Author(s):  
Sanjeev Choudhary ◽  
Sandeep Sinha ◽  
Yanhua Zhao ◽  
Srijita Banerjee ◽  
Padma Sathyanarayana ◽  
...  

Enhanced levels of nuclear factor (NF)-κB-inducing kinase (NIK), an upstream kinase in the NF-κB pathway, have been implicated in the pathogenesis of chronic inflammation in diabetes. We investigated whether increased levels of NIK could induce skeletal muscle insulin resistance. Six obese subjects with metabolic syndrome underwent skeletal muscle biopsies before and six months after gastric bypass surgery to quantitate NIK protein levels. L6 skeletal myotubes, transfected with NIK wild-type or NIK kinase-dead dominant negative plasmids, were treated with insulin alone or with adiponectin and insulin. Effects of NIK overexpression on insulin-stimulated glucose uptake were estimated using tritiated 2-deoxyglucose uptake. NF-κB activation (EMSA), phosphatidylinositol 3 (PI3) kinase activity, and phosphorylation of inhibitor κB kinase β and serine-threonine kinase (Akt) were measured. After weight loss, skeletal muscle NIK protein was significantly reduced in association with increased plasma adiponectin and enhanced AMP kinase phosphorylation and insulin sensitivity in obese subjects. Enhanced NIK expression in cultured L6 myotubes induced a dose-dependent decrease in insulin-stimulated glucose uptake. The decrease in insulin-stimulated glucose uptake was associated with a significant decrease in PI3 kinase activity and protein kinase B/Akt phosphorylation. Overexpression of NIK kinase-dead dominant negative did not affect insulin-stimulated glucose uptake. Adiponectin treatment inhibited NIK-induced NF-κB activation and restored insulin sensitivity by restoring PI3 kinase activation and subsequent Akt phosphorylation. These results indicate that NIK induces insulin resistance and further indicate that adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation. These observations suggest that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Aleksandr E Vendrov ◽  
Igor Tchivilev ◽  
Xi-Lin Niu ◽  
Juxiang Li ◽  
Marschall S Runge ◽  
...  

Several protein tyrosine phosphatases including leukocyte antigen-related (LAR) phosphatase have been implicated in insulin resistance, which is a risk factor for atherosclerosis. We showed previously that LAR negatively regulates insulin-like growth factor-1 (IGF1) signaling in vascular smooth muscle cells (VSMC) leading to increased proliferation and migration. Absence of LAR also enhanced neointima formation in response to arterial injury in mice. However, the role of LAR-modulated signaling in the development of insulin resistance has not been elucidated. Here, we investigated the function of LAR in regulating glucose uptake and insulin sensitivity. We identified snapin, a SNARE-associated protein involved in glucose transporter Glut4 vesicle fusion with plasma membrane, as a LAR-interacting protein using a yeast two-hybrid screen. IGF1-induced serine phosphorylation of snapin, its translocation to membrane and association with SNARE complex were enhanced in VSMC lacking LAR. Similarly, PI3K-PDK1-PKCζ signaling pathway was more active in LAR-/- cells after IGF1 treatment. This resulted in enhanced Glut4 activation, its membrane translocation and association with snapin. Glut4 membrane translocation and association with snapin after IGF1 treatment were impaired in snapin+/− VSMC. IGF1 treatment also increased serine phosphorylation of GSK3 β in LAR−/− VSMC leading to increased activation of glycogen synthase. Consistent with this, enhanced glucose uptake was observed in LAR−/− VSMC compared to wild-type cells after IGF1 treatment. Basal and IGF1-induced glucose uptake were significantly lower in snapin+/− VSMC than in wild-type cells. Snapin+/− mice had higher levels of blood glucose, lower quantitative insulin sensitivity check index (QUICKI) and impaired response to insulin in insulin tolerance test (ITT) compared to wild-type mice. Decrease of QUICKI and impairment of IIT were more pronounced in snapin+/− mice fed a high-fat diet. In addition, Doppler ultrasonography indicated increased arterial stiffness in snapin+/− mice. Together, these data indicate that LAR negatively regulates snapin phosphorylation which in turn affects glucose uptake leading to the development of insulin resistance and vascular pathology.


1994 ◽  
Vol 267 (2) ◽  
pp. E187-E202 ◽  
Author(s):  
A. D. Baron

There is accumulating evidence that insulin has a physiological role to vasodilate skeletal muscle vasculature in humans. This effect occurs in a dose-dependent fashion within a half-maximal response of approximately 40 microU/ml. This vasodilating action is impaired in states of insulin resistance such as obesity, non-insulin-dependent diabetes, and elevated blood pressure. The precise physiological role of insulin-mediated vasodilation is not known. Data indicate that the degree of skeletal muscle perfusion can be an important determinant of insulin-mediated glucose uptake. Therefore, it is possible that insulin-mediated vasodilation is an integral aspect of insulin's overall action to stimulate glucose uptake; thus defective vasodilation could potentially contribute to insulin resistance. In addition, insulin-mediated vasodilation may play a role in the regulation of vascular tone. Data are provided to indicate that the pressor response to systemic norepinephrine infusions is increased in obese insulin-resistant subjects. Moreover, the normal effect of insulin to shift the norepinephrine pressor dose-response curve to the right is impaired in these patients. Therefore, impaired insulin-mediated vasodilation could further contribute to the increased prevalence of hypertension observed in states of insulin resistance. Finally, data are presented to indicate that, via a yet unknown interaction with the endothelium, insulin is able to increase nitric oxide synthesis and release and through this mechanism vasodilate. It is interesting to speculate that states of insulin resistance might also be associated with a defect in insulin's action to modulate the nitric oxide system.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


Sign in / Sign up

Export Citation Format

Share Document