scholarly journals Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors

2012 ◽  
Vol 109 (38) ◽  
pp. 15101-15108 ◽  
Author(s):  
Triantafyllos Stylianopoulos ◽  
John D. Martin ◽  
Vikash P. Chauhan ◽  
Saloni R. Jain ◽  
Benjamin Diop-Frimpong ◽  
...  

The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.

2012 ◽  
Vol 122 (6) ◽  
pp. 2006-2017 ◽  
Author(s):  
Chiu-Yu Chen ◽  
Cara Bertozzi ◽  
Zhiying Zou ◽  
Lijun Yuan ◽  
John S. Lee ◽  
...  

1939 ◽  
Vol 85 (358) ◽  
pp. 902-902
Author(s):  
E. Arnold Carmichael

Outline of physiology of sympathetic nervous system and its effect on the cerebral blood-vessels. Other factors controlling cerebral blood-vessels, such as local intra-arterial pressure and gas tension. The action of adrenalin-like and cholin-like substances on the cerebral blood-vessels. Alteration in cerebral blood flow during a convulsion, and the accompanying changes in cerebro-spinal fluid pressure. Evidence for systemic sympathetic disturbance during a convulsion. Discussion of “vaso-vagal” attacks and “diencephalitic” epilepsy.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Triantafyllos Stylianopoulos

Tumor progression and response to treatment is determined in large part by the generation of mechanical stresses that stem from both the solid and the fluid phase of the tumor. Furthermore, elevated solid stress levels can regulate fluid stresses by compressing intratumoral blood and lymphatic vessels. Blood vessel compression reduces tumor perfusion, while compression of lymphatic vessels hinders the ability of the tumor to drain excessive fluid from its interstitial space contributing to the uniform elevation of the interstitial fluid pressure. Hypoperfusion and interstitial hypertension pose major barriers to the systemic administration of chemotherapeutic agents and nanomedicines to tumors, reducing treatment efficacies. Hypoperfusion can also create a hypoxic and acidic tumor microenvironment that promotes tumor progression and metastasis. Hence, alleviation of intratumoral solid stress levels can decompress tumor vessels and restore perfusion and interstitial fluid pressure. In this review, three major types of tissue level solid stresses involved in tumor growth, namely stress exerted externally on the tumor by the host tissue, swelling stress, and residual stress, are discussed separately and details are provided regarding their causes, magnitudes, and remedies. Subsequently, evidence of how stress-alleviating drugs could be used in combination with chemotherapy to improve treatment efficacy is presented, highlighting the potential of stress-alleviation strategies to enhance cancer therapy. Finally, a continuum-level, mathematical framework to incorporate these types of solid stress is outlined.


2021 ◽  
pp. 216-240
Author(s):  
Graham Mitchell

High blood pressure in humans is often associated with heart failure, edema, strokes, and episodes of fainting. Giraffes never show these. Edema, the abnormal collection of fluid in the lower legs, is prevented in giraffes by a combination of thick basement membranes of capillary blood vessels, which probably reduce their permeability to proteins, a very high tissue pressure that resists flow of fluid out of capillaries, and efficient mechanisms for returning blood to the heart. Fainting occurs when blood flow (and thus oxygen and glucose supply) to the brain is reduced. When a giraffe lifts its head after drinking water there is a sudden reduction of blood flow to the head, and fainting should result. Fainting is avoided because the blood flow that remains is diverted completely to the brain by a unique arrangement of blood vessels and nerves, and by structures that maintain the perfusion pressure of the blood flowing through the brain. Strokes can be caused by rupture of small blood vessels in the brain when they are exposed to high blood pressure of the kind reached in the head of a giraffe when it drinks surface water. Rupture of brain blood vessels is prevented in giraffes by mechanisms that reduce pressure. The posture adopted while drinking, baroreceptor-mediated reduction in cardiac output, the effects of the carotid rete, diversion of blood away from the brain, an increase in cerebrospinal fluid pressure, and passive and active constriction of blood vessels, all contribute.


2012 ◽  
Vol 122 (7) ◽  
pp. 2702-2702
Author(s):  
Chiu-Yu Chen ◽  
Cara Bertozzi ◽  
Zhiying Zou ◽  
Lijun Yuan ◽  
John S. Lee ◽  
...  

Cancer Cell ◽  
2014 ◽  
Vol 26 (1) ◽  
pp. 14-15 ◽  
Author(s):  
Vikash P. Chauhan ◽  
Yves Boucher ◽  
Cristina R. Ferrone ◽  
Sylvie Roberge ◽  
John D. Martin ◽  
...  

Author(s):  
John L. Beggs ◽  
Peter C. Johnson ◽  
Astrid G. Olafsen ◽  
C. Jane Watkins

The blood supply (vasa nervorum) to peripheral nerves is composed of an interconnected dual circulation. The endoneurium of nerve fascicles is maintained by the intrinsic circulation which is composed of microvessels primarily of capillary caliber. Transperineurial arterioles link the intrinsic circulation with the extrinsic arterial supply located in the epineurium. Blood flow in the vasa nervorum is neurogenically influenced (1,2). Although a recent hypothesis proposes that endoneurial blood flow is controlled by the action of autonomic nerve fibers associated with epineurial arterioles (2), our recent studies (3) show that in addition to epineurial arterioles other segments of the vasa nervorum are also innervated. In this study, we examine blood vessels of the endoneurium for possible innervation.


2018 ◽  
Vol 6 (9) ◽  
Author(s):  
DR.MATHEW GEORGE ◽  
DR.LINCY JOSEPH ◽  
MRS.DEEPTHI MATHEW ◽  
ALISHA MARIA SHAJI ◽  
BIJI JOSEPH ◽  
...  

Blood pressure is the force of blood pushing against blood vessel walls as the heart pumps out blood, and high blood pressure, also called hypertension, is an increase in the amount of force that blood places on blood vessels as it moves through the body. Factors that can increase this force include higher blood volume due to extra fluid in the blood and blood vessels that are narrow, stiff, or clogged(1). High blood pressure can damage blood vessels in the kidneys, reducing their ability to work properly. When the force of blood flow is high, blood vessels stretch so blood flows more easily. Eventually, this stretching scars and weakens blood vessels throughout the body, including those in the kidneys.


2016 ◽  
Vol 11 (2) ◽  
pp. 210-217 ◽  
Author(s):  
A.T. Akhmetov ◽  
A.A. Valiev ◽  
A.A. Rakhimov ◽  
S.P. Sametov ◽  
R.R. Habibullina

It is mentioned in the paper that hydrodynamic conditions of a flow in blood vessels with the stenosis are abnormal in relation to the total hemodynamic conditions of blood flow in a vascular system of a human body. A microfluidic device developed with a stepped narrowing for studying of the blood flow at abnormal conditions allowed to reveal blood structure in microchannels simulating the stenosis. Microstructure change is observed during the flow of both native and diluted blood through the narrowing. The study of hemorheological properties allowed us to determine an increasing contribution of the hydraulic resistance of the healthy part of the vessel during the stenosis formation.


Sign in / Sign up

Export Citation Format

Share Document