scholarly journals Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy

2015 ◽  
Vol 112 (33) ◽  
pp. 10310-10315 ◽  
Author(s):  
Long You ◽  
OukJae Lee ◽  
Debanjan Bhowmik ◽  
Dominic Labanowski ◽  
Jeongmin Hong ◽  
...  

Spin orbit torque (SOT) provides an efficient way to significantly reduce the current required for switching nanomagnets. However, SOT generated by an in-plane current cannot deterministically switch a perpendicularly polarized magnet due to symmetry reasons. On the other hand, perpendicularly polarized magnets are preferred over in-plane magnets for high-density data storage applications due to their significantly larger thermal stability in ultrascaled dimensions. Here, we show that it is possible to switch a perpendicularly polarized magnet by SOT without needing an external magnetic field. This is accomplished by engineering an anisotropy in the magnets such that the magnetic easy axis slightly tilts away from the direction, normal to the film plane. Such a tilted anisotropy breaks the symmetry of the problem and makes it possible to switch the magnet deterministically. Using a simple Ta/CoFeB/MgO/Ta heterostructure, we demonstrate reversible switching of the magnetization by reversing the polarity of the applied current. This demonstration presents a previously unidentified approach for controlling nanomagnets with SOT.

SPIN ◽  
2016 ◽  
Vol 06 (02) ◽  
pp. 1640008
Author(s):  
Debanjan Bhowmik ◽  
Sayeef Salahuddin

Spin–orbit torque provides an efficient way to switch magnets for low power memory applications by reducing the current density needed to switch the magnetization. Perpendicularly polarized magnets are preferred for high density data storage applications because of their high thermal stability in scaled dimensions. However, spin–orbit torque cannot switch a perpendicularly polarized magnet deterministically from up to down and down to up in the absence of an external magnetic field because spin–orbit torque alone cannot break the symmetry of the system. This poses a severe challenge to the applicability of spin–orbit torque for memory devices. In this paper, we show through micromagnetic simulations that when spin–orbit torque is applied on a magnet with a wedge shape, the moments of the magnet are aligned in-plane. On removal of the spin–orbit torque the moments deterministically evolve to vertically upward or downward direction because the anisotropy axis of the magnet is tilted away from the vertical direction owing to the wedge shape of the magnet. Thus, spin–orbit torque driven deterministic switching of the magnet in the absence of an external magnetic field is possible.


2008 ◽  
Vol 22 (12) ◽  
pp. 1923-1932
Author(s):  
JIA LIU ◽  
ZI-YU CHEN

The influence of a perpendicular magnetic field on a bound polaron near the interface of a polar–polar semiconductor with Rashba effect has been investigated. The material is based on a GaAs / Al x Ga 1-x As heterojunction and the Al concentration varying from 0.2 ≤ x ≤ 0.4 is the critical value below which the Al x Ga 1-x As is a direct band gap semiconductor.The external magnetic field strongly altered the ground state binding energy of the polaron and the Rashba spin–orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splitting of the ground state binding energy of the bound polaron. How the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity and the electron area density have been shown in this paper, taking into account the SO coupling. The contribution of the phonons are also considered. It is found that the spin-splitting states of the bound polaron are more stable, and, in the condition of weak magnetic field, the Zeeman effect can be neglected.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2237
Author(s):  
Mowafaq Mohammad Alsardia ◽  
Jaekyung Jang ◽  
Joo Yull Rhee

We explore the influence of pressure on the magnetic ground state of the heavy-fermion antiferromagnet (ferromagnet) CeAuSb 2 (CeAgSb 2 ) using first-principles calculations. The total-energy differences obtained by including the spin-orbit interactions and the on-site Coulomb potential for the Ce-derived 4f-orbitals are necessary to realize the accurate magnetic ground state of CeNMSb 2 (NM: Au and Ag). According to our results, the appearance of a new magnetic phase of CeAuSb 2 (CeAgSb 2 ) at the pressure of 2.1 GPa (3.5 GPa) is due to the rotation of the magnetic easy axis from the <001> to the <100> direction. Additionally, our data confirm that CeAgSb 2 is antiferromagnetic (AFM) above a critical pressure P c , and such a tendency is expected for CeAuSb 2 and remains to be seen. Through the spin-orbit-coupling Hamiltonian and detailed information on the occupation of individual 4f-orbitals of the Ce atom obtained by the electronic-structure calculations, we can deduce the rotation of the magnetic easy axis upon the application of pressure. According to the present and previous studies, the differences among the magnetic properties of CeNMSb 2 (NM: Cu, Ag and Au) compounds are not due to the different noble metals, but due to the subtle differences in the relative position of Ce atoms and, in turn, different occupations of Ce 4f-orbitals.


1960 ◽  
Vol 15 (3) ◽  
pp. 220-226 ◽  
Author(s):  
Klaus Körper

Radial oscillations are excited in a homogeneous infinite plasma cylinder in a homogeneous axial magnetic field by a surface current which is homogeneous in the axial and azimuthal directions. The modes of oscillations corresponding to the axial and azimuthal components of current are not coupled, and so they may be analysed separately. The magnetic field in the plasma and vacuum is obtained, and the indices of refraction for both types of oscillations are discussed thoroughly. When the currents are parallel to the external magnetic field, the oscillations are characterized by the refractive index of Eccles. On the other hand, when the current is perpendicular to the magnetic field two resonance frequencies exist, which depend on the density of the plasma and the magnetic field strength. — In the latter case the radial characteristic oscillations of the plasma cylinder in an external magnetic field are considered.


Sign in / Sign up

Export Citation Format

Share Document