scholarly journals Photonic topological insulator with broken time-reversal symmetry

2016 ◽  
Vol 113 (18) ◽  
pp. 4924-4928 ◽  
Author(s):  
Cheng He ◽  
Xiao-Chen Sun ◽  
Xiao-Ping Liu ◽  
Ming-Hui Lu ◽  
Yulin Chen ◽  
...  

A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron’s spin-1/2 (fermionic) time-reversal symmetry Tf2=−1. However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon’s spin-1 (bosonic) time-reversal symmetry Tb2=1. In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp (Tp2=−1), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb. This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. V. Yurkevich ◽  
V. Kagalovsky

AbstractWe study the stability of multiple conducting edge states in a topological insulator against perturbations allowed by the time-reversal symmetry. A system is modeled as a multi-channel Luttinger liquid, with the number of channels equal to the number of Kramers doublets at the edge. Assuming strong interactions and weak disorder, we first formulate a low-energy effective theory for a clean translation invariant system and then include the disorder terms allowed by the time-reversal symmetry. In a clean system with N Kramers doublets, N − 1 edge states are gapped by Josephson couplings and the single remaining gapless mode describes collective motion of Cooper pairs synchronous across the channels. Disorder perturbation in this regime, allowed by the time reversal symmetry is a simultaneous backscattering of particles in all N channels. Its relevance depends strongly on the parity if the number of channel N is not very large. Our main result is that disorder becomes irrelevant with the increase of the number of edge modes leading to the stability of the edge states superconducting regime even for repulsive interactions.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Partha S. Mandal ◽  
Gunther Springholz ◽  
Valentine V. Volobuev ◽  
Ondrej Caha ◽  
Andrei Varykhalov ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vadim Grinenko ◽  
Debarchan Das ◽  
Ritu Gupta ◽  
Bastian Zinkl ◽  
Naoki Kikugawa ◽  
...  

AbstractThere is considerable evidence that the superconducting state of Sr2RuO4 breaks time reversal symmetry. In the experiments showing time reversal symmetry breaking, its onset temperature, TTRSB, is generally found to match the critical temperature, Tc, within resolution. In combination with evidence for even parity, this result has led to consideration of a dxz ± idyz order parameter. The degeneracy of the two components of this order parameter is protected by symmetry, yielding TTRSB = Tc, but it has a hard-to-explain horizontal line node at kz = 0. Therefore, s ± id and d ± ig order parameters are also under consideration. These avoid the horizontal line node, but require tuning to obtain TTRSB ≈ Tc. To obtain evidence distinguishing these two possible scenarios (of symmetry-protected versus accidental degeneracy), we employ zero-field muon spin rotation/relaxation to study pure Sr2RuO4 under hydrostatic pressure, and Sr1.98La0.02RuO4 at zero pressure. Both hydrostatic pressure and La substitution alter Tc without lifting the tetragonal lattice symmetry, so if the degeneracy is symmetry-protected, TTRSB should track changes in Tc, while if it is accidental, these transition temperatures should generally separate. We observe TTRSB to track Tc, supporting the hypothesis of dxz ± idyz order.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Joon Sue Lee ◽  
Anthony Richardella ◽  
Robert D. Fraleigh ◽  
Chao-xing Liu ◽  
Weiwei Zhao ◽  
...  

2020 ◽  
Vol 16 (12) ◽  
pp. 1181-1183 ◽  
Author(s):  
Max McGinley ◽  
Nigel R. Cooper

2015 ◽  
Vol 92 (7) ◽  
Author(s):  
Huaqing Huang ◽  
Zhaoyou Wang ◽  
Nannan Luo ◽  
Zhirong Liu ◽  
Rong Lü ◽  
...  

Optik ◽  
2013 ◽  
Vol 124 (20) ◽  
pp. 4319-4324 ◽  
Author(s):  
Lunwu Zeng ◽  
Runxia Song ◽  
Jing Zeng ◽  
Cunli Dai ◽  
Zhigang Zhao

Sign in / Sign up

Export Citation Format

Share Document