scholarly journals Receptor-interacting protein kinase 3 promotes platelet activation and thrombosis

2017 ◽  
Vol 114 (11) ◽  
pp. 2964-2969 ◽  
Author(s):  
Yiwen Zhang ◽  
Jian Zhang ◽  
Rong Yan ◽  
Jingluan Tian ◽  
Yang Zhang ◽  
...  

Previous studies have shown that receptor-interacting protein kinase 3 (RIP3) is involved in many important biological processes, including necroptosis, apoptosis, and inflammation. Here we show that RIP3 plays a critical role in regulating platelet functions and in vivo thrombosis and hemostasis. Tail bleeding times were significantly longer in RIP3-knockout (RIP3−/−) mice compared with their wild-type (WT) littermates. In an in vivo model of arteriole thrombosis, mice lacking RIP3 exhibited prolonged occlusion times. WT mice repopulated with RIP3−/− bone marrow-derived cells had longer occlusion times than RIP3−/− mice repopulated with WT bone marrow-derived cells, suggesting a role for RIP3-deficient platelets in arterial thrombosis. Consistent with these findings, we observed that RIP3 was expressed in both human and mice platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 analog, U46619. Phosphorylation of Akt induced by U46619 or thrombin was diminished in RIP3−/− platelets. Moreover, RIP3 interacted with Gα13. Platelet spreading on fibrinogen and clot retraction were impaired in the absence of RIP3. RIP3 inhibitor dose-dependently inhibited platelet aggregation in vitro and prevented arterial thrombus formation in vivo. These data demonstrate a role for RIP3 in promoting in vivo thrombosis and hemostasis by amplifying platelet activation. RIP3 may represent a novel promising therapeutic target for thrombotic diseases.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2762-2762
Author(s):  
Yiwen Zhang ◽  
Jian Zhang ◽  
Rong Yan ◽  
Jie Zhang ◽  
Mengxing Chen ◽  
...  

Abstract Objective: Receptor-interacting protein 3 (RIP3) is a member of RIP family with a Ser/Thr protein kinase domain in its amino-terminus which is essential for kinase activity and autophosphorylation. The roles of RIP3 in embryonic development and different disease pathologies, such as inflammation and infections, have been reported in recent years. However, the role of RIP3 in thrombosis and hemostasis remains unknown. Methods: Hematologic analysis was performed and tail bleeding time was monitored. Mouse platelets were isolated from anti-coagulated whole blood. Platelet aggregation and secretion were recorded at real time. Platelet P-selectin exposure and specific fibrinogen binding were detected by flow cytometry. TXA2 generation was measured with enzyme immunoassay (EIA) kit. Protein phosphorylations were detected by western blotting. Result: RIP3-/- mice had tail-bleeding times that were significantly prolonged compared with their wild type littermates. In an in vivo model of mesenteric arteriole thrombosis, mice lacking RIP3 exhibited delayed thrombus formation, fewer accumulated platelets, smaller thrombi, and prolonged occlusion times. RIP3 was expressed in both human and mouse platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 (TXA2) analogue, U46619. The defect in ADP secretion appears responsible for the impaired platelet aggregation, because addition of exogenous ADP rescued the reduced platelet aggregation. Although TXA2 generation and α-granule secretion were not impaired, integrin αIIbβ3 activation was attenuated in RIP3-/- platelets. Moreover, phosphorylation of Akt induced by U46619 or thrombin was markedly reduced in the absence of RIP3. Activation of Akt signaling restored the impaired aggregation of RIP3-/- platelets. ERK and p38 phosphorylation elicited by either U46619 or thrombin was attenuated in RIP3-/- platelets. In contrast, U46619- and thrombin-induced activation of PTEN, PDK1, or Src was not impaired in RIP3-/- platelets. Conclusion: Our data demonstrate a novel role for RIP3 in amplifying U46619- and thrombin-induced platelet activation by mediating Akt-dependent ADP secretion, and in supporting hemostasis and thrombus formation in vivo. RIP3 may represent a novel target to modulate PARs and TP signaling and a potential new target for antithrombotic strategy. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3658-3658
Author(s):  
Guoying Zhang ◽  
Emily Welch ◽  
Asrar B. Malik ◽  
Xiaoping Du ◽  
Zhenyu Li

Abstract Bacterial lipopolysaccharide (LPS) induces rapid thrombocytopenia, hypotension and sepsis. Although growing evidence suggests that platelet activation plays a critical role in LPS-induced thrombocytopenia and tissue damage, the mechanism of LPS-mediated platelet activation is unclear. Here we show that LPS stimulated platelet secretion of dense and alpha granules as indicated by ATP release and P-selectin expression, and thus enhanced platelet activation induced by low concentrations of platelet agonists. Platelets express components of the LPS receptor-signaling complex, including Toll-like receptor (TLR4), CD14, MD2, and MyD88. The effect of LPS on platelet activation was abolished by an anti-TLR4 blocking antibody or TLR4 knockout. Furthermore, LPS-induced potentiation of platelet aggregation and FeCl3-induced thrombus formation were abolished in MyD88 knockout mice. Importantly, TLR4 mediates LPS-induced cGMP elevation and the stimulatory effect of LPS on platelet aggregation was also abolished by inhibitors of nitric oxide synthase (NOS) and the cGMP-dependent protein kinase (PKG). Thus, LPS promotes platelet secretion and aggregation through a TLR4/MyD88 and cGMP/PKG-dependent pathway.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 485-485
Author(s):  
Firdos Ahmad ◽  
Lucia Stefanini ◽  
Timothy Daniel Ouellette ◽  
Teshell K Greene ◽  
Stefan Feske ◽  
...  

Abstract Abstract 485 Platelet activation is a central event in thrombosis and hemostasis. We recently demonstrated that most aspects of platelet activation depend on synergistic signaling by two signaling modules: 1) Ca2+/CalDAG-GEFI/Rap1 and 2) PKC/P2Y12/Rap1. The intracellular Ca2+ concentration of platelets is regulated by Ca2+ release from the endoplasmic reticulum (ER) and store-operated calcium entry (SOCE) through the plasma membrane. Stromal interaction molecule 1 (STIM1) was recently identified as the ER Ca2+ sensor that couples Ca2+ store release to SOCE. In this study, we compared the activation response of platelets lacking STIM1−/− or CalDAG-GEFI−/−, both in vitro and in vivo. To specifically investigate Ca2+-dependent platelet activation, some of the experiments were performed in the presence of inhibitors to P2Y12. The murine Stim1 gene was deleted in the megakaryocyte/platelet lineage by breeding Stim flox/flox mice with PF4-Cre mice (STIM1fl/fl). STIM1fl/fl platelets showed markedly reduced SOCE in response to agonist stimulation. aIIbβ3 activation in STIM1fl/fl platelets was significantly reduced in the presence but not in the absence of the P2Y12 inhibitor, 2-MesAMP. In contrast, aIIbb3 activation was completely inhibited in 2-MesAMP-treated CalDAG-GEFI−/− platelets. Deficiency in STIM1, and to a lesser extent in CalDAG-GEFI, reduced phosphatidyl serine (PS) exposure in platelets stimulated under static conditions. PS exposure was completely abolished in both STIM1fl/fl and CalDAG-GEFI−/− platelets stimulated in the presence of 2-MesAMP. To test the ability of platelets to form thrombi under conditions of arterial shear stress, we performed flow chamber experiments with anticoagulated blood perfused over a collagen surface. Thrombus formation was abolished in CalDAG-GEFI−/− blood and WT blood treated with 2-MesAMP. In contrast, STIM1fl/fl platelets were indistinguishable from WT platelets in their ability to form thrombi. STIM1fl/fl platelets, however, were impaired in their ability to express PS when adhering to collagen under flow. Consistently, when subjected to a laser injury thrombosis model, STIM1fl/fl mice showed delayed and reduced fibrin generation, resulting in the formation of unstable thrombi. In conclusion, our studies indicate a critical role of STIM1 in SOCE and platelet procoagulant activity, but not in CalDAG-GEFI mediated activation of aIIbb3 integrin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 4971-4980 ◽  
Author(s):  
Ye Chen ◽  
Rodrigo Jacamo ◽  
Yue-xi Shi ◽  
Rui-yu Wang ◽  
Venkata Lokesh Battula ◽  
...  

Abstract The interactions between hematopoietic cells and the bone marrow (BM) microenvironment play a critical role in normal and malignant hematopoiesis and drug resistance. These interactions within the BM niche are unique and could be important for developing new therapies. Here, we describe the development of extramedullary bone and bone marrow using human mesenchymal stromal cells and endothelial colony-forming cells implanted subcutaneously into immunodeficient mice. We demonstrate the engraftment of human normal and leukemic cells engraft into the human extramedullary bone marrow. When normal hematopoietic cells are engrafted into the model, only discrete areas of the BM are hypoxic, whereas leukemia engraftment results in widespread severe hypoxia, just as recently reported by us in human leukemias. Importantly, the hematopoietic cell engraftment could be altered by genetical manipulation of the bone marrow microenvironment: Extramedullary bone marrow in which hypoxia-inducible factor 1α was knocked down in mesenchymal stromal cells by lentiviral transfer of short hairpin RNA showed significant reduction (50% ± 6%; P = .0006) in human leukemic cell engraftment. These results highlight the potential of a novel in vivo model of human BM microenvironment that can be genetically modified. The model could be useful for the study of leukemia biology and for the development of novel therapeutic modalities aimed at modifying the hematopoietic microenvironment.


Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3352-3360 ◽  
Author(s):  
Meghna U. Naik ◽  
Timothy J. Stalker ◽  
Lawrence F. Brass ◽  
Ulhas P. Naik

Abstract Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin αIIbβ3. Once platelet activation has occurred, integrin αIIbβ3 stabilizes thrombus formation by providing agonist-independent “outside-in” signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A–deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation.


Haematologica ◽  
2021 ◽  
Author(s):  
Inga Scheller ◽  
Sarah Beck ◽  
Vanessa Göb ◽  
Carina Gross ◽  
Raluca A. I. Neagoe ◽  
...  

Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes (MKs) but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin β4 (encoded by Tmsb4x) is one of the two main G-actin sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin β4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. MK numbers in the bone marrow (BM) and spleen were unaltered, however, Tmsb4x KO MKs showed defective proplatelet formation in vitro and in vivo. Thymosin β4 deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein (GP) VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin β4 for actin dynamics during platelet biogenesis, platelet activation downstream of GPVI and thrombus stability.


Blood ◽  
2015 ◽  
Vol 126 (15) ◽  
pp. 1823-1830 ◽  
Author(s):  
Benoit Decouture ◽  
Elise Dreano ◽  
Tiphaine Belleville-Rolland ◽  
Orjeta Kuci ◽  
Blandine Dizier ◽  
...  

Key PointsIn vivo and in vitro thrombus formation is altered in MRP4-deficient mice. MRP4 modulates the cAMP–protein kinase A platelet signaling pathway.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2029-2029
Author(s):  
Andrew Sinnamon ◽  
Peisong Ma ◽  
Lawrence F. Brass

Abstract Abstract 2029 Platelet regulation plays a critical role in hemostasis. Underactivation can result in failure to stop bleeding, whereas inappropriate platelet activation can cause thrombus formation. The 130-kDa scaffold protein spinophilin (SPL) has recently been shown to play a role in preventing platelet overactivation by forming a complex with the proteins RGS10, RGS18, and the tyrosine phosphatase SHP-1. This complex dissociates when platelet are activated by thrombin or thromboxane A2 and evidence from spinophilin knockout mice suggests that this regulates platelet activation in vitro and in vivo. Spinophilin was originally isolated as a binding partner for the serine/threonine phosphatase, PP-1, in neurons. Here we asked whether PP-1 forms a complex with spinophilin in human platelets and, if so, whether the complex is affected by platelet activation. The approaches that we used to answer this question included Western blotting with antibodies to PP-1 and spinophilin, and co-precipitation studies looking for an association between spinophilin and PP-1. The results of the Western blots confirm the presence of PP-1 in platelets. The initial co-precipitation studies show that little, if any, PP-1 is associated with spinophilin in resting platelets, but there is a time-dependent increase in the SPL/PP-1 complex when platelets are activated with the PAR1 (thrombin receptor) activating peptide, SFLLRN. Thus it appears that within approximately the same time frame that the SPL/RGS/SHP-1 complex is decaying in activated platelets, the SPL/PP-1 complex is forming. Targets for PP1 have not been fully identified in platelets, but it is known that spinophilin localizes to the plasma membrane upon platelet activation. Since spinophilin is thought to direct PP1 targeting in neurons, it is reasonable to propose that it may be directing PP1 to targets in platelets in a similar manner. The studies described in this abstract were supported in part by a 2010 ASH Trainee Research Award to Andrew Sinnamon, who is a first year medical student at the University of Pennsylvania. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 111 (03) ◽  
pp. 491-507 ◽  
Author(s):  
Eduardo Fuentes ◽  
Lina Badimon ◽  
Julio Caballero ◽  
Teresa Padró ◽  
Gemma Vilahur ◽  
...  

SummaryPlatelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5′-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent.


Sign in / Sign up

Export Citation Format

Share Document