scholarly journals Correction for Kopp et al., Temperature-driven global sea-level variability in the Common Era

2016 ◽  
Vol 113 (38) ◽  
pp. E5694-E5696 ◽  
2016 ◽  
Vol 113 (11) ◽  
pp. E1434-E1441 ◽  
Author(s):  
Robert E. Kopp ◽  
Andrew C. Kemp ◽  
Klaus Bittermann ◽  
Benjamin P. Horton ◽  
Jeffrey P. Donnelly ◽  
...  

We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0–700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000–1400 CE is associated with ∼0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability P≥0.95) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely (P=0.95) that 20th century GSL would have risen by less than 51% of the observed 13.8±1.5 cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report.


2019 ◽  
Author(s):  
Maren Bender ◽  
Thomas Mann ◽  
Paolo Stocchi ◽  
Dominik Kneer ◽  
Tilo Schöne ◽  
...  

Abstract. Indonesia is a country composed of several thousand islands, many of them small, low-lying and densely inhabited. These are, in particular, subject to high risk of inundation due to future relative sea level changes. The Spermonde Archipelago, off the coast of Southwest Sulawesi, consists of more than 100 small islands. This study presents a dataset of 24 sea-level index points from fossil microatolls, surveyed on five islands in the Spermonde Archipelago and compares these new results with published data from the same region and with relative sea level predictions from different Glacial Isostatic Adjustment (GIA) models. The newly surveyed fossil microatolls are located around the islands of Tambakulu, Suranti (both ~ 60 km offshore of Makassar city), Bone Batang and Kodingareng Keke (both located in the center of the Archipelago) and Sanrobengi (located ~ 20 km south-southwest of Makassar). Results from the near- and mid-shelf islands indicate that relative sea level between 4 to 6 ka BP was less than one meter above present sea level. The only exception to this pattern is the heavily populated island of Barrang Lompo, where we record a significant subsidence when compared to the other islands. These new results support the conclusions from a previous dataset and are relevant to constrain late Holocene ice melting scenarios. Samples from the two outer islands (Tambakulu and Suranti) yielded ages spanning the Common Era that represent, to our knowledge, the first reported for the entire Southeast Asian region.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matteo Vacchi ◽  
Kristen M. Joyse ◽  
Robert E. Kopp ◽  
Nick Marriner ◽  
David Kaniewski ◽  
...  

AbstractFuture warming in the Mediterranean is expected to significantly exceed global values with unpredictable implications on the sea-level rise rates in the coming decades. Here, we apply an empirical-Bayesian spatio-temporal statistical model to a dataset of 401 sea-level index points from the central and western Mediterranean and reconstruct rates of sea-level change for the past 10,000 years. We demonstrate that the mean rates of Mediterranean industrial-era sea-level rise have been significantly faster than any other period since ~4000 years ago. We further highlight a previously unrecognized variability in Mediterranean sea-level change rates. In the Common Era, this variability correlates with the occurrence of major regional-scale cooling/warming episodes. Our data show a sea-level stabilization during the Late Antique Little Ice Age cold event, which interrupted a general rising trend of ~0.45 mm a−1 that characterized the warming episodes of the Common Era. By contrast, the Little Ice Age cold event had only minor regional effects on Mediterranean sea-level change rates.


2010 ◽  
Vol 114 (11) ◽  
pp. 2524-2535 ◽  
Author(s):  
Ge Chen ◽  
Zhenzhen Wang ◽  
Chengcheng Qian ◽  
Chongjing Lv ◽  
Yong Han

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2466
Author(s):  
Berardino Buonocore ◽  
Yuri Cotroneo ◽  
Vincenzo Capozzi ◽  
Giuseppe Aulicino ◽  
Giovanni Zambardino ◽  
...  

This work presents an 18-year-long (2002–2019) tide-gauge dataset collected on the Island of Ischia (Gulf of Naples, Southern Tyrrhenian Sea) that can contribute to the analysis of the basic features of sea-level variability in this region. Analysis of tidal constituents shows that the Gulf of Naples is characterized by the absence of any amphidromic system. In this area, sea-level changes due to the astronomical component of the tide are generally limited to ±20 cm with respect to the mean sea level, but the impact of this variability is enhanced by global sea-level increase and the effect of regional atmospheric perturbations that might also triple sea-level variations. The effects of these events, whose frequency has increased in recent decades, has been dramatic in coastal areas where intense social and economic activity occurs, e.g., in Ischia. On interannual time scales, the results indicate that the relative sea-level rise in Ischia has a magnitude of 3.9 mm/year. Special attention is dedicated to the “acqua alta” episodes and to their linkage with long-term sea-level trends and atmospheric forcing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer S. Walker ◽  
Robert E. Kopp ◽  
Timothy A. Shaw ◽  
Niamh Cahill ◽  
Nicole S. Khan ◽  
...  

AbstractSea-level budgets account for the contributions of processes driving sea-level change, but are predominantly focused on global-mean sea level and limited to the 20th and 21st centuries. Here we estimate site-specific sea-level budgets along the U.S. Atlantic coast during the Common Era (0–2000 CE) by separating relative sea-level (RSL) records into process-related signals on different spatial scales. Regional-scale, temporally linear processes driven by glacial isostatic adjustment dominate RSL change and exhibit a spatial gradient, with fastest rates of rise in southern New Jersey (1.6 ± 0.02 mm yr−1). Regional and local, temporally non-linear processes, such as ocean/atmosphere dynamics and groundwater withdrawal, contributed between −0.3 and 0.4 mm yr−1 over centennial timescales. The most significant change in the budgets is the increasing influence of the common global signal due to ice melt and thermal expansion since 1800 CE, which became a dominant contributor to RSL with a 20th century rate of 1.3 ± 0.1 mm yr−1.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Shiva Shankar Manche ◽  
Rabindra K. Nayak ◽  
Prakash Chandra Mohanty ◽  
M. V. R. Shesasai ◽  
V. K. Dadhwal

Sign in / Sign up

Export Citation Format

Share Document