scholarly journals Sea-Level Variability in the Gulf of Naples and the “Acqua Alta” Episodes in Ischia from Tide-Gauge Observations in the Period 2002–2019

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2466
Author(s):  
Berardino Buonocore ◽  
Yuri Cotroneo ◽  
Vincenzo Capozzi ◽  
Giuseppe Aulicino ◽  
Giovanni Zambardino ◽  
...  

This work presents an 18-year-long (2002–2019) tide-gauge dataset collected on the Island of Ischia (Gulf of Naples, Southern Tyrrhenian Sea) that can contribute to the analysis of the basic features of sea-level variability in this region. Analysis of tidal constituents shows that the Gulf of Naples is characterized by the absence of any amphidromic system. In this area, sea-level changes due to the astronomical component of the tide are generally limited to ±20 cm with respect to the mean sea level, but the impact of this variability is enhanced by global sea-level increase and the effect of regional atmospheric perturbations that might also triple sea-level variations. The effects of these events, whose frequency has increased in recent decades, has been dramatic in coastal areas where intense social and economic activity occurs, e.g., in Ischia. On interannual time scales, the results indicate that the relative sea-level rise in Ischia has a magnitude of 3.9 mm/year. Special attention is dedicated to the “acqua alta” episodes and to their linkage with long-term sea-level trends and atmospheric forcing.

2019 ◽  
Vol 19 (5) ◽  
pp. 1067-1086 ◽  
Author(s):  
Frank Colberg ◽  
Kathleen L. McInnes ◽  
Julian O'Grady ◽  
Ron Hoeke

Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally; however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP 8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide–surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, 20-year-long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Changes in extreme sea levels are apparent, but there are large inter-model differences. On the southern mainland coast all models simulated a southward movement of the subtropical ridge which led to a small reduction in sea level extremes in the hydrodynamic simulations. Sea level changes over the Gulf of Carpentaria in the north are largest and positive during austral summer in two out of the four models. In these models, changes to the northwest monsoon appear to be the cause of the sea level response. These simulations highlight a sensitivity of this semi-enclosed gulf to changes in large-scale dynamics in this region and indicate that further assessment of the potential changes to the northwest monsoon in a larger multi-model ensemble should be investigated, together with the northwest monsoon's effect on extreme sea levels.


2012 ◽  
Vol 19 (1) ◽  
pp. 95-111 ◽  
Author(s):  
R. V. Donner ◽  
R. Ehrcke ◽  
S. M. Barbosa ◽  
J. Wagner ◽  
J. F. Donges ◽  
...  

Abstract. The study of long-term trends in tide gauge data is important for understanding the present and future risk of changes in sea-level variability for coastal zones, particularly with respect to the ongoing debate on climate change impacts. Traditionally, most corresponding analyses have exclusively focused on trends in mean sea-level. However, such studies are not able to provide sufficient information about changes in the full probability distribution (especially in the more extreme quantiles). As an alternative, in this paper we apply quantile regression (QR) for studying changes in arbitrary quantiles of sea-level variability. For this purpose, we chose two different QR approaches and discuss the advantages and disadvantages of different settings. In particular, traditional linear QR poses very restrictive assumptions that are often not met in reality. For monthly data from 47 tide gauges from along the Baltic Sea coast, the spatial patterns of quantile trends obtained in linear and nonparametric (spline-based) frameworks display marked differences, which need to be understood in order to fully assess the impact of future changes in sea-level variability on coastal areas. In general, QR demonstrates that the general variability of Baltic sea-level has increased over the last decades. Linear quantile trends estimated for sliding windows in time reveal a wide-spread acceleration of trends in the median, but only localised changes in the rates of changes in the lower and upper quantiles.


2018 ◽  
Vol 8 (1) ◽  
pp. 55-71 ◽  
Author(s):  
H. Bâki Iz

Abstract This study provides additional information about the impact of atmospheric pressure on sea level variations. The observed regularity in sea level atmospheric pressure depends mainly on the latitude and verified to be dominantly random closer to the equator. It was demonstrated that almost all the annual and semiannual sea level variations at 27 globally distributed tide gauge stations can be attributed to the regional/local atmospheric forcing as an inverted barometric effect. Statistically significant non-linearities were detected in the regional atmospheric pressure series, which in turn impacted other sea level variations as compounders in tandem with the lunar nodal forcing, generating lunar sub-harmonics with multidecadal periods. It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes,which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism. This study also affirmed that there are no statistically significant secular trends in the progression of regional atmospheric pressures, hence there was no contribution to the sea level trends during the 20th century by the atmospheric pressure.Meanwhile, the estimated nonuniform scale factors of the inverted barometer effects suggest that the sea level atmospheric pressure will bias the sea level trends inferred from satellite altimetry measurements if their impact is accounted for as corrections without proper scaling.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
H. Bâki Iz

AbstractThermosteric contribution of warming oceans to the global sea level variations during the last century was evaluated at globally distributed 27 tide gauge stations with records over 80 years. The assessment was made using a recently proposed lagged model inclusive of a sea level trend, long and decadal periodicities, and lagged sea surface temperature measurements. The new model solutions revealed that almost all the long period periodic sea level changes experienced at these stations can be attributed to the lagged thermosteric effects of the warming oceans during the 20th century. Meanwhile, statistically significant (p<0.05) anomalous thermosteric contributions to the secular trends, some of them as large as 1.0±0.2 mm/yr, were detected at six tide gauge stations close to the equator and open seas. The findings of this study revealed a more complex impact of the warming oceans at the globally distributed tide gauge stations other than a secular contribution to the sea level trends of the previous studies.


2021 ◽  
Author(s):  
Anara Kudabayeva ◽  
Michael Schindelegger ◽  
Rui M. Ponte ◽  
Bernd Uebbing

&lt;p&gt; &lt;span&gt;Accurate long-term measurements of coastal sea level are fundamental for understanding changes in ocean circulation and assessing the impact of low-frequency sea-level variability on, e.g., near-shore ecosystems, groundwater dynamics, and coastal flooding. However, tide gauges are sparsely distributed in space and the extent to which satellite altimetry data can be used to infer the complex patterns of sea level near the coast is a subject of debate. Here, we revisit earlier attempts of connecting tide gauge and altimetry observations of low-frequency sea-level changes across the coastal zone. Our interest lies both in short-scale spatial structures indicative of dynamic decoupling between coastal areas and the deep ocean, and in the benefits of using a reprocessed, coastal altimetry product (X-TRACK) for the analysis. The mean annual cycle is chosen as a first benchmark and more than 200 globally distributed tide gauges are examined. We compute statistics between tide gauge and along-track altimeter series within spatial radii of 20 km (&amp;#8220;coastal&amp;#8221;) and 134 km of the tide gauge location, and additionally split altimetry data inside the 134-km circle into &amp;#8220;shallow&amp;#8221; and &amp;#8220;deep&amp;#8221; groups relative to the 200-m isobaths. Globally averaged RMS (root-mean-square) differences in the &amp;#8220;coastal&amp;#8221; and &amp;#8220;shallow&amp;#8221; categories are 1.9 and 2.4 cm for the X-TRACK product, somewhat lower than the corresponding values from the non-optimized Integrated Multi-Mission Ocean Altimeter Data for Climate Research Version 4.2 (2.3 and 2.6 cm). Examination of inter-annual sea-level variability from 1993 to 2019 is underway, with initial focus on regions where poor correspondence between satellite and tide gauge sea-level estimates has been noted in the past (e.g., US East Coast and western South America). At most locations analyzed so far, RMS differences decrease and correlations improve as one approaches the coast along the satellite tracks. However, the X-TRACK estimates tend to become erratic within 20&amp;#8211;30 km from the tide gauge, suggesting that the usability of classical nadir altimetry measurements for studying short-scale coastal dynamics is still limited despite ongoing reprocessing efforts.&lt;/span&gt;&lt;/p&gt;


2013 ◽  
Vol 3 (2) ◽  
pp. 127-135
Author(s):  
H. Bâki Iz ◽  
X.L. Ding ◽  
C.K. Shum

Abstract This study investigates, using a new variable-acceleration model, the validity of the implicit assertion in previous studies regarding global constant sea level rise accelerations. Thirteen out of twenty seven globally distributed tide gauge stations, with records longer than 80 years, exhibit statistically significant quartic coefficients (p < 0.05) revealing the presence of variable sea level accelerations though not as a global phenomenon. Most of these stations initially exhibit decreasing negative velocities until early 20th century and increasing positive velocities after 1970’s following a period of constant velocities. It is shown that, for those locations experiencing statistically significant variable sea level accelerations, the estimates based on the conventional linear representation of linear sea level trends are not appropriate, and are notably biased for a number of stations. All solutions account for serial correlations, which otherwise induce biases in solution statistics. It is also demonstrated that the omission of non-linearities in sea level changes will bias the sea level trends for short records, such as those from satellite altimetry, as large as 3 mm/yr.


2001 ◽  
Vol 38 (2) ◽  
pp. 293-308 ◽  
Author(s):  
Andreas Prokoph ◽  
Anthony D Fowler ◽  
R Timothy Patterson

Wavelet transform and other signal analysis techniques suggest that the planktic foraminiferal (PF) long-term evolutionary record of the last 127 Ma can be attributed to complex periodic and nonlinear patterns. Correlation of the PF extinction pattern with other geological series favors an origin of the ~30 Ma periodicity and self-organization by quasi-periodic mantle-plume cycles that in turn drive episodic volcanism, CO2-degassing, oceanic anoxic conditions, and sea-level fluctuations. Stationary ~30 Ma periodicity and a weak secular trend of ~100 Ma period are evident in the PF record, even without consideration of the mass extinction at the K–T boundary. The 27–32 Ma periodicity in the impact crater record and lows in the global sea-level curve, respectively, are ~6.5 Ma and ~2.3 Ma out of phase with PF-extinction data, although major PF-extinction events correspond to the bolide impacts at the K–T boundary and in late Eocene. Another six extinction events correspond to abrupt global sea-level falls between the late Albian and early Oligocene. Self-organization in the PF record is characterized by increased radiation rates after major extinction events and a steady number of baseline species. Our computer model of long-term PF evolution replicates this SO pattern. The model consists of output from the logistic map, which is forced at 30 Ma and 100 Ma frequencies. The model has significant correlations with the relative PF-extinction data. In particular, it replicates singularities, such as the K–T event, nonstationary 2.5–10 Ma periodicities, and phase shifts in the ~30 Ma periodicity of the PF record.


2021 ◽  
Author(s):  
Gustav Pallisgaard-Olesen ◽  
Vivi Kathrine Pedersen ◽  
Natalya Gomez

&lt;div&gt; &lt;p&gt;The landscape in western Scandinavia has undergone dramatic changes through numerous glaciations during the Quaternary. These changes in topography and in the volumes of offshore sediment deposits, have caused significant isostatic adjustments and local sea level changes, owing to erosional unloading and depositional loading of the lithosphere. Mass redistribution from erosion and deposition also has the potential to cause significant pertubations of the geoid, resulting in additional sea-level changes. The combined sea-level response from these processes, is yet to be investigated in detail for Scandinavia.&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;In this study we estimate the total sea level change from late-Pliocene- Quaternary glacial erosion and deposition in the Scandinavian region, using a gravitationally self-consistent global sea level model that includes the full viscoelastic response of the solid Earth to surface loading and unloading. In addition to the total late Pliocene-Quaternary mass redistribution, we &lt;span&gt;also &lt;/span&gt;estimate transient sea level changes related specifically to the two latest glacial cycles.&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;We utilize existing observations of offshore sediment thicknesses of glacial origin, and combine these with estimates of onshore glacial erosion and estimates of erosion on the inner shelf. Based on these estimates, we can define mass redistribution and construct a preglacial landscape setting.&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;Our preliminary results show &lt;span&gt;perturbations of&lt;/span&gt; the local sea level up to &amp;#8764; 200 m since&lt;span&gt; the&lt;/span&gt; late-Pliocene in the Norwegian Sea, suggesting that erosion and deposition ha&lt;span&gt;ve&lt;/span&gt; influenced the local paleo sea level history in Scandinavia significantly.&lt;/p&gt; &lt;/div&gt;


Sign in / Sign up

Export Citation Format

Share Document