scholarly journals Single-molecule peptide fingerprinting

2018 ◽  
Vol 115 (13) ◽  
pp. 3338-3343 ◽  
Author(s):  
Jetty van Ginkel ◽  
Mike Filius ◽  
Malwina Szczepaniak ◽  
Pawel Tulinski ◽  
Anne S. Meyer ◽  
...  

Proteomic analyses provide essential information on molecular pathways of cellular systems and the state of a living organism. Mass spectrometry is currently the first choice for proteomic analysis. However, the requirement for a large amount of sample renders a small-scale proteomics study challenging. Here, we demonstrate a proof of concept of single-molecule FRET-based protein fingerprinting. We harnessed the AAA+ protease ClpXP to scan peptides. By using donor fluorophore-labeled ClpP, we sequentially read out FRET signals from acceptor-labeled amino acids of peptides. The repurposed ClpXP exhibits unidirectional processing with high processivity and has the potential to detect low-abundance proteins. Our technique is a promising approach for sequencing protein substrates using a small amount of sample.

2017 ◽  
Author(s):  
Jetty van Ginkel ◽  
Mike Filius ◽  
Malwina Szczepaniak ◽  
Pawel Tulinski ◽  
Anne S. Meyer ◽  
...  

ABSTRACTProteomic analyses provide essential information on molecular pathways of cellular systems and the state of a living organism. Mass spectrometry is currently the first choice for proteomic analysis. However, the requirement for a large amount of sample renders a small-scale proteomics study, such as single-cell analysis, challenging. Here we demonstrate a proof of concept of singlemolecule FRET-based protein fingerprinting. We harnessed the AAA+ protease ClpXP to scan peptides. By using donor fluorophore-labeled ClpP, we sequentially read out FRET signals from acceptor-labeled amino acids of peptides. The repurposed ClpXP exhibits uni-directional processing with high processivity and has the potential to detect low-abundance proteins. Our technique is a promising approach for sequencing protein substrates using a small amount of sample.SIGNIFICANCEProtein sequencing remains a challenge for small samples. A sensitive sequencing technology will create the opportunity for single-cell proteomics and real-time screening for on-site medical diagnostics. In order to resolve protein identity, we previously developed a computational algorithm that analyzes the ordered sequence of only two types of amino acids within a protein species. Through modification of a biological nanomachine, here we developed single-molecule fluorescence technology to linearize protein molecules and to read signals from labeled amino acids in an ordered manner. This proof of concept of singlemolecule fingerprinting will open a new door to single-molecule protein sequencing and pave the road towards the development of a new, fast, and reliable diagnostic tool.


2020 ◽  
Author(s):  
Nikolas Hundt

Abstract Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.


Water Policy ◽  
2003 ◽  
Vol 5 (3) ◽  
pp. 203-212
Author(s):  
J. Lisa Jorgensona

This paper discusses a series of discusses how web sites now report international water project information, and maps the combined donor investment in more than 6000 water projects, active since 1995. The maps show donor investment:  • has addressed water scarcity,  • has improved access to improvised water resources,  • correlates with growth in GDP,  • appears to show a correlation with growth in net private capital flow,  • does NOT appear to correlate with growth in GNI. Evaluation indicates problems in the combined water project portfolios for major donor organizations: •difficulties in grouping projects over differing Sector classifications, food security, or agriculture/irrigation is the most difficult.  • inability to map donor projects at the country or river basin level because 60% of the donor projects include no location data (town, province, watershed) in the title or abstracts available on the web sites.  • no means to identify donor projects with utilization of water resources from training or technical assistance.  • no information of the source of water (river, aquifer, rainwater catchment).  • an identifiable quantity of water (withdrawal amounts, or increased water efficiency) is not provided.  • differentiation between large scale verses small scale projects. Recommendation: Major donors need to look at how the web harvests and combines their information, and look at ways to agree on a standard template for project titles to include more essential information. The Japanese (JICA) and the Asian Development Bank provide good models.


Nano Letters ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1694-1701 ◽  
Author(s):  
Sung Hyun Kim ◽  
Hyunwoo Kim ◽  
Hawoong Jeong ◽  
Tae-Young Yoon

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2208
Author(s):  
Jesús D. Trigo ◽  
Óscar J. Rubio ◽  
Miguel Martínez-Espronceda ◽  
Álvaro Alesanco ◽  
José García ◽  
...  

Mobile devices and social media have been used to create empowering healthcare services. However, privacy and security concerns remain. Furthermore, the integration of interoperability biomedical standards is a strategic feature. Thus, the objective of this paper is to build enhanced healthcare services by merging all these components. Methodologically, the current mobile health telemonitoring architectures and their limitations are described, leading to the identification of new potentialities for a novel architecture. As a result, a standardized, secure/private, social-media-based mobile health architecture has been proposed and discussed. Additionally, a technical proof-of-concept (two Android applications) has been developed by selecting a social media (Twitter), a security envelope (open Pretty Good Privacy (openPGP)), a standard (Health Level 7 (HL7)) and an information-embedding algorithm (modifying the transparency channel, with two versions). The tests performed included a small-scale and a boundary scenario. For the former, two sizes of images were tested; for the latter, the two versions of the embedding algorithm were tested. The results show that the system is fast enough (less than 1 s) for most mHealth telemonitoring services. The architecture provides users with friendly (images shared via social media), straightforward (fast and inexpensive), secure/private and interoperable mHealth services.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Anoja Megalathan ◽  
Kalani M. Wijesinghe ◽  
Soma Dhakal

Sign in / Sign up

Export Citation Format

Share Document