scholarly journals BRCT-domain protein BRIT1 influences class switch recombination

2017 ◽  
Vol 114 (31) ◽  
pp. 8354-8359 ◽  
Author(s):  
Wei-Feng Yen ◽  
Ashutosh Chaudhry ◽  
Bharat Vaidyanathan ◽  
William T. Yewdell ◽  
Joseph N. Pucella ◽  
...  

DNA double-strand breaks (DSBs) serve as obligatory intermediates for Ig heavy chain (Igh) class switch recombination (CSR). The mechanisms by which DSBs are resolved to promote long-range DNA end-joining while suppressing genomic instability inherently associated with DSBs are yet to be fully elucidated. Here, we use a targeted short-hairpin RNA screen in a B-cell lymphoma line to identify the BRCT-domain protein BRIT1 as an effector of CSR. We show that conditional genetic deletion of BRIT1 in mice leads to a marked increase in unrepaired Igh breaks and a significant reduction in CSR in ex vivo activated splenic B cells. We find that the C-terminal tandem BRCT domains of BRIT1 facilitate its interaction with phosphorylated H2AX and that BRIT1 is recruited to the Igh locus in an activation-induced cytidine deaminase (AID) and H2AX-dependent fashion. Finally, we demonstrate that depletion of another BRCT-domain protein, MDC1, in BRIT1-deleted B cells increases the severity of CSR defect over what is observed upon loss of either protein alone. Our results identify BRIT1 as a factor in CSR and demonstrate that multiple BRCT-domain proteins contribute to optimal resolution of AID-induced DSBs.

2008 ◽  
Vol 205 (3) ◽  
pp. 557-564 ◽  
Author(s):  
Sonia Franco ◽  
Michael M. Murphy ◽  
Gang Li ◽  
Tiffany Borjeson ◽  
Cristian Boboila ◽  
...  

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Artemis are classical nonhomologous DNA end-joining (C-NHEJ) factors required for joining a subset of DNA double-strand breaks (DSB), particularly those requiring end processing. In mature B cells, activation-induced cytidine deaminase (AID) initiates class switch recombination (CSR) by introducing lesions into S regions upstream of two recombining CH exons, which are processed into DSBs and rejoined by C-NHEJ to complete CSR. The function of DNA-PKcs in CSR has been controversial with some reports but not others showing that DNA-PKcs–deficient mice are significantly impaired for CSR. Artemis-deficient B cells reportedly undergo CSR at normal levels. Overall, it is still not known whether there are any CSR-associated DSBs that require DNA-PKcs and/or Artemis to be joined. Here, we have used an immunoglobulin (Ig)H locus-specific fluorescent in situ hybridization assay to unequivocally demonstrate that both DNA-PKcs and, unexpectedly, Artemis are necessary for joining a subset of AID-dependent DSBs. In the absence of either factor, B cells activated for CSR frequently generate AID-dependent IgH locus chromosomal breaks and translocations. We also find that under specific activation conditions, DNA-PKcs−/− B cells with chromosomal breaks are eliminated or at least prevented from progressing to metaphase via a p53-dependent response.


2017 ◽  
Vol 114 (49) ◽  
pp. E10560-E10567 ◽  
Author(s):  
Hai Vu Nguyen ◽  
Junchao Dong ◽  
Rohit A. Panchakshari ◽  
Vipul Kumar ◽  
Frederick W. Alt ◽  
...  

In B cells, Ig class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID), the activity of which leads to DNA double-strand breaks (DSBs) within IgH switch (S) regions. Preferential targeting of AID-mediated DSBs to S sequences is critical for allowing diversification of antibody functions, while minimizing potential off-target oncogenic events. Here, we used gene targeted inactivation of histone methyltransferase (HMT) multiple myeloma SET domain (MMSET) in mouse B cells and the CH12F3 cell line to explore its role in CSR. We find that deletion of MMSET-II, the isoform containing the catalytic SET domain, inhibits CSR without affecting either IgH germline transcription or joining of DSBs within S regions by classical nonhomologous end joining (C-NHEJ). Instead, we find that MMSET-II inactivation leads to decreased AID recruitment and DSBs at the upstream donor Sμ region. Our findings suggest a role for the HMT MMSET in promoting AID-mediated DNA breaks during CSR.


2010 ◽  
Vol 207 (4) ◽  
pp. 855-865 ◽  
Author(s):  
Anne Bothmer ◽  
Davide F. Robbiani ◽  
Niklas Feldhahn ◽  
Anna Gazumyan ◽  
Andre Nussenzweig ◽  
...  

Class switch recombination (CSR) diversifies antibodies by joining highly repetitive DNA elements, which are separated by 60–200 kbp. CSR is initiated by activation-induced cytidine deaminase, an enzyme that produces multiple DNA double-strand breaks (DSBs) in switch regions. Switch regions are joined by a mechanism that requires an intact DNA damage response and classical or alternative nonhomologous end joining (A-NHEJ). Among the DNA damage response factors, 53BP1 has the most profound effect on CSR. We explore the role of 53BP1 in intrachromosomal DNA repair using I-SceI to introduce paired DSBs in the IgH locus. We find that the absence of 53BP1 results in an ataxia telangiectasia mutated–dependent increase in DNA end resection and that resected DNA is preferentially repaired by microhomology-mediated A-NHEJ. We propose that 53BP1 favors long-range CSR in part by protecting DNA ends against resection, which prevents A-NHEJ–dependent short-range rejoining of intra–switch region DSBs.


2020 ◽  
Vol 117 (37) ◽  
pp. 22953-22961 ◽  
Author(s):  
Jennifer L. Crowe ◽  
Xiaobin S. Wang ◽  
Zhengping Shao ◽  
Brian J. Lee ◽  
Verna M. Estes ◽  
...  

The DNA-dependent protein kinase (DNA-PK), which is composed of the KU heterodimer and the large catalytic subunit (DNA-PKcs), is a classical nonhomologous end-joining (cNHEJ) factor. Naïve B cells undergo class switch recombination (CSR) to generate antibodies with different isotypes by joining two DNA double-strand breaks at different switching regions via the cNHEJ pathway. DNA-PK and the cNHEJ pathway play important roles in the DNA repair phase of CSR. To initiate cNHEJ, KU binds to DNA ends and recruits and activates DNA-PK. Activated DNA-PK phosphorylates DNA-PKcs at the S2056 and T2609 clusters. Loss of T2609 cluster phosphorylation increases radiation sensitivity but whether T2609 phosphorylation has a role in physiological DNA repair remains elusive. Using the DNA-PKcs5A mouse model carrying alanine substitutions at the T2609 cluster, here we show that loss of T2609 phosphorylation of DNA-PKcs does not affect the CSR efficiency. Yet, the CSR junctions recovered from DNA-PKcs5A/5A B cells reveal increased chromosomal translocations, extensive use of distal switch regions (consistent with end resection), and preferential usage of microhomology—all signs of the alternative end-joining pathway. Thus, these results uncover a role of DNA-PKcs T2609 phosphorylation in promoting cNHEJ repair pathway choice during CSR.


2012 ◽  
Vol 209 (2) ◽  
pp. 291-305 ◽  
Author(s):  
Likun Du ◽  
Roujun Peng ◽  
Andrea Björkman ◽  
Noel Filipe de Miranda ◽  
Cornelia Rosner ◽  
...  

Cernunnos is involved in the nonhomologous end-joining (NHEJ) process during DNA double-strand break (DSB) repair. Here, we studied immunoglobulin (Ig) class switch recombination (CSR), a physiological process which relies on proper repair of the DSBs, in B cells from Cernunnos-deficient patients. The pattern of in vivo generated CSR junctions is altered in these cells, with unusually long microhomologies and a lack of direct end-joining. The CSR junctions from Cernunnos-deficient patients largely resemble those from patients lacking DNA ligase IV, Artemis, or ATM, suggesting that these factors are involved in the same end-joining pathway during CSR. By screening 269 mature B cell lymphoma biopsies, we also identified a somatic missense Cernunnos mutation in a diffuse large B cell lymphoma sample. This mutation has a dominant-negative effect on joining of a subset of DNA ends in an in vitro NHEJ assay. Translocations involving both Ig heavy chain loci and clonal-like, dynamic IgA switching activities were observed in this tumor. Collectively, our results suggest a link between defects in the Cernunnos-dependent NHEJ pathway and aberrant CSR or switch translocations during the development of B cell malignancies.


2005 ◽  
Vol 202 (6) ◽  
pp. 733-738 ◽  
Author(s):  
Vasco M. Barreto ◽  
Qiang Pan-Hammarstrom ◽  
Yaofeng Zhao ◽  
Lennart Hammarstrom ◽  
Ziva Misulovin ◽  
...  

Class switch recombination was the last of the lymphocyte-specific DNA modification reactions to appear in the evolution of the adaptive immune system. It is absent in cartilaginous and bony fish, and it is common to all tetrapods. Class switching is initiated by activation-induced cytidine deaminase (AID), an enzyme expressed in cartilaginous and bony fish that is also required for somatic hypermutation. Fish AID differs from orthologs found in tetrapods in several respects, including its catalytic domain and carboxy-terminal region, both of which are essential for the switching reaction. To determine whether evolution of class switch recombination required alterations in AID, we assayed AID from Japanese puffer and zebra fish for class-switching activity in mouse B cells. We find that fish AID catalyzes class switch recombination in mammalian B cells. Thus, AID had the potential to catalyze this reaction before the teleost and tetrapod lineages diverged, suggesting that the later appearance of a class-switching reaction was dependent on the evolution of switch regions and multiple constant regions in the IgH locus.


2008 ◽  
Vol 205 (13) ◽  
pp. 3031-3040 ◽  
Author(s):  
Likun Du ◽  
Mirjam van der Burg ◽  
Sergey W. Popov ◽  
Ashwin Kotnis ◽  
Jacques J.M. van Dongen ◽  
...  

DNA double-strand breaks (DSBs) introduced in the switch (S) regions are intermediates during immunoglobulin class switch recombination (CSR). These breaks are subsequently recognized, processed, and joined, leading to recombination of the two S regions. Nonhomologous end-joining (NHEJ) is believed to be the principle mechanism involved in DSB repair during CSR. One important component in NHEJ, Artemis, has however been considered to be dispensable for efficient CSR. In this study, we have characterized the S recombinational junctions from Artemis-deficient human B cells. Sμ–Sα junctions could be amplified from all patients tested and were characterized by a complete lack of “direct” end-joining and a remarkable shift in the use of an alternative, microhomology-based end-joining pathway. Sμ–Sγ junctions could only be amplified from one patient who carries “hypomorphic” mutations. Although these Sμ–Sγ junctions appear to be normal, a significant increase of an unusual type of sequential switching from immunoglobulin (Ig)M, through one IgG subclass, to a different IgG subclass was observed, and the Sγ–Sγ junctions showed long microhomologies. Thus, when the function of Artemis is impaired, varying modes of CSR junction resolution may be used for different S regions. Our findings strongly link Artemis to the predominant NHEJ pathway during CSR.


2013 ◽  
Vol 210 (12) ◽  
pp. 2495-2502 ◽  
Author(s):  
Anne-Sophie Thomas-Claudepierre ◽  
Ebe Schiavo ◽  
Vincent Heyer ◽  
Marjorie Fournier ◽  
Adeline Page ◽  
...  

Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to switch regions and by the subsequent generation of double-stranded DNA breaks (DSBs). These DNA breaks are ultimately resolved through the nonhomologous end joining (NHEJ) pathway. We show that during CSR, AID associates with subunits of cohesin, a complex previously implicated in sister chromatid cohesion, DNA repair, and the formation of DNA loops between enhancers and promoters. Furthermore, we implicate the cohesin complex in the mechanism of CSR by showing that cohesin is dynamically recruited to the Sμ-Cμ region of the IgH locus during CSR and that knockdown of cohesin or its regulatory subunits results in impaired CSR and increased usage of microhomology-based end joining.


Author(s):  
Sergio Castañeda-Zegarra ◽  
Camilla Huse ◽  
Øystein Røsand ◽  
Antonio Sarno ◽  
Mengtan Xing ◽  
...  

Classical non-homologous end joining (NHEJ) is a molecular pathway that detects, processes and ligates DNA double-strand breaks (DSBs) throughout the cell cycle. Mutations in several NHEJ genes result in neurological abnormalities and immunodeficiency both in humans and mice. The NHEJ pathway is required for the V(D)J recombination in developing B and T lymphocytes, and for class switch recombination in mature B cells. Ku heterodimer formed by Ku70 and Ku80 recognizes DSBs and facilitates the recruitment of accessory factors (e.g., DNA-PKcs, Artemis, Paxx and Mri/Cyren) and downstream core factors subunits XLF, XRCC4 and Lig4. Accessory factors might be dispensable for the process depending on the genetic background and DNA lesion type. To determine the physiological role of Mri in DNA repair and development, we introduced frame-shift mutation in the Mri gene in mice. We then analyzed the development of Mri-deficient mice as well as wild type and immunodeficient controls. Mice lacking Mri possessed reduced levels of class switch recombination in B lymphocytes and slow proliferation of neuronal progenitors when compared to wild type littermates. Human cell lines lacking Mri were as sensitive to DSBs as WT controls. Overall, we concluded that Mri/Cyren is largely dispensable for DNA repair and mouse development.


2020 ◽  
Vol 295 (8) ◽  
pp. 2398-2406 ◽  
Author(s):  
Stefania Musilli ◽  
Vincent Abramowski ◽  
Benoit Roch ◽  
Jean-Pierre de Villartay

Repair of DNA double-strand breaks by the nonhomologous end joining pathway is central for proper development of the adaptive immune system. This repair pathway involves eight factors, including XRCC4-like factor (XLF)/Cernunnos and the paralog of XRCC4 and XLF, PAXX nonhomologous end joining factor (PAXX). Xlf−/− and Paxx−/− mice are viable and exhibit only a mild immunophenotype. However, mice lacking both PAXX and XLF are embryonic lethal because postmitotic neurons undergo massive apoptosis in embryos. To decipher the roles of PAXX and XLF in both variable, diversity, and joining recombination and immunoglobulin class switch recombination, here, using Cre/lox-specific deletion to prevent double-KO embryonic lethality, we developed two mouse models of a conditional Xlf KO in a Paxx−/− background. Cre expressed under control of the iVav or CD21 promoter enabled Xlf deletion in early hematopoietic progenitors and splenic mature B cells, respectively. We demonstrate the XLF and PAXX interplay during variable, diversity, and joining recombination in vivo but not during class switch recombination, for which PAXX appeared to be fully dispensable. Xlf/Paxx double KO in hematopoietic progenitors resulted in a shorter lifespan associated with onset of thymic lymphomas, revealing a genome caretaking function of XLF/PAXX.


Sign in / Sign up

Export Citation Format

Share Document