scholarly journals FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis

2018 ◽  
Vol 115 (20) ◽  
pp. E4720-E4729 ◽  
Author(s):  
Jennifer M. Frost ◽  
M. Yvonne Kim ◽  
Guen Tae Park ◽  
Ping-Hung Hsieh ◽  
Miyuki Nakamura ◽  
...  

The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis. We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin.

2017 ◽  
Author(s):  
Jennifer M. Frost ◽  
M. Yvonne Kim ◽  
Guen-Tae Park ◽  
Ping-Hung Hsieh ◽  
Miyuki Nakamura ◽  
...  

AbstractThe DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1), subunit of the chromatin remodeler FAcilitates Chromatin Transactions (FACT), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis. We find that FACT co-localizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin.


2007 ◽  
Vol 27 (5) ◽  
pp. 1631-1648 ◽  
Author(s):  
Igor Chernukhin ◽  
Shaharum Shamsuddin ◽  
Sung Yun Kang ◽  
Rosita Bergström ◽  
Yoo-Wook Kwon ◽  
...  

ABSTRACT CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. “Serial” chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the β-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.


2017 ◽  
Author(s):  
Feifei Bao ◽  
Peter R. LoVerso ◽  
Jeffrey N. Fisk ◽  
Victor B. Zhurkin ◽  
Feng Cui

AbstractThe tumor suppressor protein p53 interacts with DNA in a sequence-dependent manner. Thousands of p53 binding sites have been mapped genome-wide in normal and cancer cells. However, the way p53 selectively binds its cognate sites in different types of cells is not fully understood. Here, we performed a comprehensive analysis of 25 published p53 cistromes and identified 3,551 and 6,039 ‘high-confidence’ binding sites in normal and cancer cells, respectively. Our analysis revealed two distinct epigenetic features underlying p53-DNA interactionsin vivo. First, p53 binding sites are associated with transcriptionally active histone marks (H3K4me3 and H3K36me3) in normal-cell chromatin, but with repressive histone marks (H3K27me3) in cancer-cell chromatin. Second, p53 binding sites in cancer cells are characterized by a lower level of DNA methylation than their counterparts in normal cells, probably related to global hypomethylation in cancers. Intriguingly, regardless of the cell type, p53 sites are highly enriched in the endogenous retroviral elements of the ERV1 family, highlighting the importance of this repeat family in shaping the transcriptional network of p53. Moreover, the p53 sites exhibit an unusual combination of chromatin patterns: high nucleosome occupancy and, at the same time, high sensitivity to DNase I. Our results suggest that p53 can access its target sites in a chromatin environment that is non-permissive to most DNA-binding transcription factors, which may allow p53 to act as a pioneer transcription factor in the context of chromatin.


2021 ◽  
Author(s):  
Valentina Carlini ◽  
Cristina Policarpi ◽  
Jamie A Hackett

Environmental factors can trigger cellular responses that propagate across mitosis or even generations. Perturbations to the epigenome could underpin such acquired changes, however, the extent and contexts in which modified chromatin states confer heritable memory in mammals is unclear. Here we exploit a modular epigenetic editing strategy to establish de novo heterochromatin domains (epialleles) at endogenous loci and track their inheritance in a developmental model. We find that naive pluripotent phases systematically erase ectopic domains of heterochromatin via active mechanisms, which acts as an intergenerational safeguard against transmission of epialleles. Upon lineage specification however, acquired chromatin states can be probabilistically inherited under selectively favourable conditions, including propagation of p53 silencing through in vivo development. Using genome-wide CRISPR screening, we identify the mechanisms that block heritable silencing memory in pluripotent cells, and demonstrate removal of Dppa2 unlocks the potential for epigenetic inheritance uncoupled from DNA sequence. Our study outlines a mechanistic basis for how epigenetic inheritance is restricted in mammals, and reveals genomic- and developmental- contexts in which heritable memory is feasible.


2019 ◽  
Author(s):  
Maria Rojec ◽  
Antoine Hocher ◽  
Matthias Merkenschlager ◽  
Tobias Warnecke

ABSTRACTNucleosomes restrict DNA accessibility throughout eukaryotic genomes, with repercussions for replication, transcription, and other DNA-templated processes. How this globally restrictive organization emerged from a presumably more open ancestral state remains poorly understood. Here, to better understand the challenges associated with establishing globally restrictive chromatin, we express histones in a naïve bacterial system that has not evolved to deal with nucleosomal structures:Escherichia coli. We find that histone proteins from the archaeonMethanothermus fervidusassemble on theE. colichromosomein vivoand protect DNA from micrococcal nuclease digestion, allowing us to map binding footprints genome-wide. We provide evidence that nucleosome occupancy along theE. coligenome tracks intrinsic sequence preferences but is disturbed by ongoing transcription and replication. Notably, we show that higher nucleosome occupancy at promoters and across gene bodies is associated with lower transcript levels, consistent with local repressive effects. Surprisingly, however, this sudden enforced chromatinization has only mild repercussions for growth, suggesting that histones can become established as ubiquitous chromatin proteins without interfering critically with key DNA-templated processes. Our results have implications for the evolvability of transcriptional ground states and highlight chromatinization by archaeal histones as a potential avenue for controlling genome accessibility in synthetic prokaryotic systems.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Maria Rojec ◽  
Antoine Hocher ◽  
Kathryn M Stevens ◽  
Matthias Merkenschlager ◽  
Tobias Warnecke

Nucleosomes restrict DNA accessibility throughout eukaryotic genomes, with repercussions for replication, transcription, and other DNA-templated processes. How this globally restrictive organization emerged during evolution remains poorly understood. Here, to better understand the challenges associated with establishing globally restrictive chromatin, we express histones in a naive system that has not evolved to deal with nucleosomal structures: Escherichia coli. We find that histone proteins from the archaeon Methanothermus fervidus assemble on the E. coli chromosome in vivo and protect DNA from micrococcal nuclease digestion, allowing us to map binding footprints genome-wide. We show that higher nucleosome occupancy at promoters is associated with lower transcript levels, consistent with local repressive effects. Surprisingly, however, this sudden enforced chromatinization has only mild repercussions for growth unless cells experience topological stress. Our results suggest that histones can become established as ubiquitous chromatin proteins without interfering critically with key DNA-templated processes.


2009 ◽  
Vol 30 (4) ◽  
pp. 935-947 ◽  
Author(s):  
Shelya X. Zeng ◽  
Yanping Li ◽  
Yetao Jin ◽  
Qi Zhang ◽  
David M. Keller ◽  
...  

ABSTRACT Tight regulation of microtubule (MT) dynamics is essential for proper chromosome movement during mitosis. Here we show, using mammalian cells, that structure-specific recognition protein 1 (SSRP1) is a novel regulator of MT dynamics. SSRP1 colocalizes with the spindle and midbody MTs, and associates with MTs both in vitro and in vivo. Purified SSRP1 facilitates tubulin polymerization and MT bundling in vitro. Knockdown of SSRP1 inhibits the growth of MTs and leads to disorganized spindle structures, reduction of K-fibers and midbody fibers, disrupted chromosome movement, and attenuated cytokinesis in vivo. These results demonstrate that SSRP1 is crucial for MT growth and spindle assembly during mitosis.


2012 ◽  
Vol 109 (38) ◽  
pp. E2514-E2522 ◽  
Author(s):  
Thijn van der Heijden ◽  
Joke J.F.A. van Vugt ◽  
Colin Logie ◽  
John van Noort

Nucleosome positioning dictates eukaryotic DNA compaction and access. To predict nucleosome positions in a statistical mechanics model, we exploited the knowledge that nucleosomes favor DNA sequences with specific periodically occurring dinucleotides. Our model is the first to capture both dyad position within a few base pairs, and free binding energy within 2 kBT, for all the known nucleosome positioning sequences. By applying Percus’s equation to the derived energy landscape, we isolate sequence effects on genome-wide nucleosome occupancy from other factors that may influence nucleosome positioning. For both in vitro and in vivo systems, three parameters suffice to predict nucleosome occupancy with correlation coefficients of respectively 0.74 and 0.66. As predicted, we find the largest deviations in vivo around transcription start sites. This relatively simple algorithm can be used to guide future studies on the influence of DNA sequence on chromatin organization.


2011 ◽  
Vol 9 (3) ◽  
pp. 219-232 ◽  
Author(s):  
Wen-Hui Lien ◽  
Xingyi Guo ◽  
Lisa Polak ◽  
Lee N. Lawton ◽  
Richard A. Young ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (7) ◽  
pp. e11572 ◽  
Author(s):  
Annie Yang ◽  
Zhou Zhu ◽  
Arminja Kettenbach ◽  
Philipp Kapranov ◽  
Frank McKeon ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document