scholarly journals Sequential activation of human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting

2018 ◽  
Vol 115 (24) ◽  
pp. E5487-E5496 ◽  
Author(s):  
Jae Ho Lee ◽  
Sowmya Chandrasekar ◽  
SangYoon Chung ◽  
Yu-Hsien Hwang Fu ◽  
Demi Liu ◽  
...  

Signal recognition particle (SRP) is a universally conserved targeting machine that mediates the targeted delivery of ∼30% of the proteome. The molecular mechanism by which eukaryotic SRP achieves efficient and selective protein targeting remains elusive. Here, we describe quantitative analyses of completely reconstituted human SRP (hSRP) and SRP receptor (SR). Enzymatic and fluorescence analyses showed that the ribosome, together with a functional signal sequence on the nascent polypeptide, are required to activate SRP for rapid recruitment of the SR, thereby delivering translating ribosomes to the endoplasmic reticulum. Single-molecule fluorescence spectroscopy combined with cross-complementation analyses reveal a sequential mechanism of activation whereby the ribosome unlocks the hSRP from an autoinhibited state and primes SRP to sample a variety of conformations. The signal sequence further preorganizes the mammalian SRP into the optimal conformation for efficient recruitment of the SR. Finally, the use of a signal sequence to activate SRP for receptor recruitment is a universally conserved feature to enable efficient and selective protein targeting, and the eukaryote-specific components confer upon the mammalian SRP the ability to sense and respond to ribosomes.

2020 ◽  
Author(s):  
Jae Ho Lee ◽  
SangYoon Chung ◽  
Yu-Hsien Hwang Fu ◽  
Ruilin Qian ◽  
Xuemeng Sun ◽  
...  

AbstractSignal recognition particle (SRP) is a universally conserved targeting machine that couples the synthesis of ~30% of the proteome to their proper membrane localization1,2. In eukaryotic cells, SRP recognizes translating ribosomes bearing hydrophobic signal sequences and, through interaction with SRP receptor (SR), delivers them to the Sec61p translocase on the endoplasmic reticulum (ER) membrane1,2. How SRP ensures efficient and productive initiation of protein translocation at the ER is not well understood. Here, single molecule fluorescence spectroscopy demonstrates that cargo-loaded SRP induces a global compaction of SR, driving a >90 Å movement of the SRP•SR GTPase complex from the vicinity of the ribosome exit, where it initially assembles, to the distal site of SRP. These rearrangements bring translating ribosomes near the membrane, expose conserved Sec61p docking sites on the ribosome and weaken SRP’s interaction with the signal sequence on the nascent polypeptide, thus priming the translating ribosome for engaging the translocation machinery. Disruption of these rearrangements severely impairs cotranslational protein translocation and is the cause of failure in an SRP54 mutant linked to severe congenital neutropenia. Our results demonstrate that multiple largescale molecular motions in the SRP•SR complex are required to drive the transition from protein targeting to translocation; these post-targeting rearrangements provide potential new points for biological regulation as well as disease intervention.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Thomas R Noriega ◽  
Jin Chen ◽  
Peter Walter ◽  
Joseph D Puglisi

The signal recognition particle (SRP) directs translating ribosome-nascent chain complexes (RNCs) that display a signal sequence to protein translocation channels in target membranes. All previous work on the initial step of the targeting reaction, when SRP binds to RNCs, used stalled and non-translating RNCs. This meant that an important dimension of the co-translational process remained unstudied. We apply single-molecule fluorescence measurements to observe directly and in real-time E. coli SRP binding to actively translating RNCs. We show at physiologically relevant SRP concentrations that SRP-RNC association and dissociation rates depend on nascent chain length and the exposure of a functional signal sequence outside the ribosome. Our results resolve a long-standing question: how can a limited, sub-stoichiometric pool of cellular SRP effectively distinguish RNCs displaying a signal sequence from those that are not? The answer is strikingly simple: as originally proposed, SRP only stably engages translating RNCs exposing a functional signal sequence.


2012 ◽  
Vol 23 (16) ◽  
pp. 3027-3040 ◽  
Author(s):  
Ying Zhang ◽  
Uta Berndt ◽  
Hanna Gölz ◽  
Arlette Tais ◽  
Stefan Oellerer ◽  
...  

Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain.


1995 ◽  
Vol 128 (3) ◽  
pp. 273-282 ◽  
Author(s):  
J D Miller ◽  
S Tajima ◽  
L Lauffer ◽  
P Walter

The signal recognition particle receptor (SR) is required for the cotranslational targeting of both secretory and membrane proteins to the endoplasmic reticulum (ER) membrane. During targeting, the SR interacts with the signal recognition particle (SRP) which is bound to the signal sequence of the nascent protein chain. This interaction catalyzes the GTP-dependent transfer of the nascent chain from SRP to the protein translocation apparatus in the ER membrane. The SR is a heterodimeric protein comprised of a 69-kD subunit (SR alpha) and a 30-kD subunit (SR beta) which are associated with the ER membrane in an unknown manner. SR alpha and the 54-kD subunits of SRP (SRP54) each contain related GTPase domains which are required for SR and SRP function. Molecular cloning and sequencing of a cDNA encoding SR beta revealed that SR beta is a transmembrane protein and, like SR alpha and SRP54, is a member of the GTPase superfamily. Although SR beta defines its own GTPase subfamily, it is distantly related to ARF and Sar1. Using UV cross-linking, we confirm that SR beta binds GTP specifically. Proteolytic digestion experiments show that SR alpha is required for the interaction of SRP with SR. SR alpha appears to be peripherally associated with the ER membrane, and we suggest that SR beta, as an integral membrane protein, mediates the membrane association of SR alpha. The discovery of its guanine nucleotide-binding domain, however, makes it likely that its role is more complex than that of a passive anchor for SR alpha. These findings suggest that a cascade of three directly interacting GTPases functions during protein targeting to the ER membrane.


2011 ◽  
Vol 22 (13) ◽  
pp. 2309-2323 ◽  
Author(s):  
David Braig ◽  
Miryana Mircheva ◽  
Ilie Sachelaru ◽  
Eli O. van der Sluis ◽  
Lukas Sturm ◽  
...  

Protein targeting by the signal recognition particle (SRP) and the bacterial SRP receptor FtsY requires a series of closely coordinated steps that monitor the presence of a substrate, the membrane, and a vacant translocon. Although the influence of substrate binding on FtsY-SRP complex formation is well documented, the contribution of the membrane is largely unknown. In the current study, we found that negatively charged phospholipids stimulate FtsY-SRP complex formation. Phospholipids act on a conserved positively charged amphipathic helix in FtsY and induce a conformational change that strongly enhances the FtsY-lipid interaction. This membrane-bound, signal sequence–independent FtsY-SRP complex is able to recruit RNCs to the membrane and to transfer them to the Sec translocon. Significantly, the same results were also observed with an artificial FtsY-SRP fusion protein, which was tethered to the membrane via a transmembrane domain. This indicates that substrate recognition by a soluble SRP is not essential for cotranslational targeting in Escherichia coli. Our findings reveal a remarkable flexibility of SRP-dependent protein targeting, as they indicate that substrate recognition can occur either in the cytosol via ribosome-bound SRP or at the membrane via a preassembled FtsY-SRP complex.


2014 ◽  
Vol 205 (5) ◽  
pp. 693-706 ◽  
Author(s):  
Ishu Saraogi ◽  
David Akopian ◽  
Shu-ou Shan

Efficient and accurate protein localization is essential to cells and requires protein-targeting machineries to both effectively capture the cargo in the cytosol and productively unload the cargo at the membrane. To understand how these challenges are met, we followed the interaction of translating ribosomes during their targeting by the signal recognition particle (SRP) using a site-specific fluorescent probe in the nascent protein. We show that initial recruitment of SRP receptor (SR) selectively enhances the affinity of SRP for correct cargos, thus committing SRP-dependent substrates to the pathway. Real-time measurement of cargo transfer from the targeting to translocation machinery revealed multiple factors that drive this event, including GTPase rearrangement in the SRP–SR complex, stepwise displacement of SRP from the ribosome and signal sequence by SecYEG, and elongation of the nascent polypeptide. Our results elucidate how active and sequential regulation of the SRP–cargo interaction drives efficient and faithful protein targeting.


1999 ◽  
Vol 63 (1) ◽  
pp. 161-173 ◽  
Author(s):  
Peter Fekkes ◽  
Arnold J. M. Driessen

SUMMARY Proteins that perform their activity within the cytoplasmic membrane or outside this cell boundary must be targeted to the translocation site prior to their insertion and/or translocation. In bacteria, several targeting routes are known; the SecB- and the signal recognition particle-dependent pathways are the best characterized. Recently, evidence for the existence of a third major route, the twin-Arg pathway, was gathered. Proteins that use either one of these three different pathways possess special features that enable their specific interaction with the components of the targeting routes. Such targeting information is often contained in an N-terminal extension, the signal sequence, but can also be found within the mature domain of the targeted protein. Once the nascent chain starts to emerge from the ribosome, competition for the protein between different targeting factors begins. After recognition and binding, the targeting factor delivers the protein to the translocation sites at the cytoplasmic membrane. Only by means of a specific interaction between the targeting component and its receptor is the cargo released for further processing and translocation. This mechanism ensures the high-fidelity targeting of premembrane and membrane proteins to the translocation site.


2014 ◽  
Vol 289 (44) ◽  
pp. 30868-30879 ◽  
Author(s):  
Connie Y. Wang ◽  
Thomas F. Miller

We characterize the conformational dynamics and substrate selectivity of the signal recognition particle (SRP) using a thermodynamic free energy cycle approach and microsecond timescale molecular dynamics simulations. The SRP is a central component of the co-translational protein targeting machinery that binds to the N-terminal signal peptide (SP) of nascent proteins. We determined the shift in relative conformational stability of the SRP upon substrate binding to quantify allosteric coupling between SRP domains. In particular, for dipeptidyl aminopeptidase, an SP that is recognized by the SRP for co-translational targeting, it is found that substrate binding induces substantial changes in the SRP toward configurations associated with targeting of the nascent protein, and it is found that the changes are modestly enhanced by a mutation that increases the hydrophobicity of the SP. However, for alkaline phosphatase, an SP that is recognized for post-translational targeting, substrate binding induces the reverse change in the SRP conformational distribution away from targeting configurations. Microsecond timescale trajectories reveal the intrinsic flexibility of the SRP conformational landscape and provide insight into recent single molecule studies by illustrating that 10-nm lengthscale changes between FRET pairs occur via the rigid-body movement of SRP domains connected by the flexible linker region. In combination, these results provide direct evidence for the hypothesis that substrate-controlled conformational switching in the SRP provides a mechanism for discriminating between different SPs and for connecting substrate binding to downstream steps in the protein targeting pathway.


2007 ◽  
Vol 18 (7) ◽  
pp. 2728-2734 ◽  
Author(s):  
Niels Bradshaw ◽  
Peter Walter

The RNA component of the signal recognition particle (SRP) is universally required for cotranslational protein targeting. Biochemical studies have shown that SRP RNA participates in the central step of protein targeting by catalyzing the interaction of the SRP with the SRP receptor (SR). SRP RNA also accelerates GTP hydrolysis in the SRP·SR complex once formed. Using a reverse-genetic and biochemical analysis, we identified mutations in the E. coli SRP protein, Ffh, that abrogate the activity of the SRP RNA and cause corresponding targeting defects in vivo. The mutations in Ffh that disrupt SRP RNA activity map to regions that undergo dramatic conformational changes during the targeting reaction, suggesting that the activity of the SRP RNA is linked to the major conformational changes in the signal sequence-binding subunit of the SRP. In this way, the SRP RNA may coordinate the interaction of the SRP and the SR with ribosome recruitment and transfer to the translocon, explaining why the SRP RNA is an indispensable component of the protein targeting machinery.


2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Przemyslaw Grudnik ◽  
Gert Bange ◽  
Irmgard Sinning

Abstract Protein targeting by the signal recognition particle (SRP) is universally conserved and starts with the recognition of a signal sequence in the context of a translating ribosome. SRP54 and FtsY, two multidomain proteins with guanosine triphosphatase (GTPase) activity, are the central elements of the SRP system. They have to coordinate the presence of a signal sequence with the presence of a vacant translocation channel in the membrane. For coordination the two GTPases form a unique, nearly symmetric heterodimeric complex in which the activation of GTP hydrolysis plays a key role for membrane insertion of substrate proteins. Recent results are integrated in an updated perception of the order of events in SRP-mediated protein targeting.


Sign in / Sign up

Export Citation Format

Share Document