scholarly journals Signal sequence–independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle

2011 ◽  
Vol 22 (13) ◽  
pp. 2309-2323 ◽  
Author(s):  
David Braig ◽  
Miryana Mircheva ◽  
Ilie Sachelaru ◽  
Eli O. van der Sluis ◽  
Lukas Sturm ◽  
...  

Protein targeting by the signal recognition particle (SRP) and the bacterial SRP receptor FtsY requires a series of closely coordinated steps that monitor the presence of a substrate, the membrane, and a vacant translocon. Although the influence of substrate binding on FtsY-SRP complex formation is well documented, the contribution of the membrane is largely unknown. In the current study, we found that negatively charged phospholipids stimulate FtsY-SRP complex formation. Phospholipids act on a conserved positively charged amphipathic helix in FtsY and induce a conformational change that strongly enhances the FtsY-lipid interaction. This membrane-bound, signal sequence–independent FtsY-SRP complex is able to recruit RNCs to the membrane and to transfer them to the Sec translocon. Significantly, the same results were also observed with an artificial FtsY-SRP fusion protein, which was tethered to the membrane via a transmembrane domain. This indicates that substrate recognition by a soluble SRP is not essential for cotranslational targeting in Escherichia coli. Our findings reveal a remarkable flexibility of SRP-dependent protein targeting, as they indicate that substrate recognition can occur either in the cytosol via ribosome-bound SRP or at the membrane via a preassembled FtsY-SRP complex.

1999 ◽  
Vol 146 (4) ◽  
pp. 723-730 ◽  
Author(s):  
Gerald Bacher ◽  
Martin Pool ◽  
Bernhard Dobberstein

Protein targeting to the membrane of the ER is regulated by three GTPases, the 54-kD subunit of the signal recognition particle (SRP) and the α- and β-subunit of the SRP receptor (SR). Here, we report on the GTPase cycle of the β-subunits of the SR (SRβ). We found that SRβ binds GTP with high affinity and interacts with ribosomes in the GTP-bound state. Subsequently, the ribosome increases the GTPase activity of SRβ and thus functions as a GTPase activating protein for SRβ. Furthermore, the interaction between SRβ and the ribosome leads to a reduction in the affinity of SRβ for guanine nucleotides. We propose that SRβ regulates the interaction of SR with the ribosome and thereby allows SRα to scan membrane-bound ribosomes for the presence of SRP. Interaction between SRP and SRα then leads to release of the signal sequence from SRP and insertion into the translocon. GTP hydrolysis then results in dissociation of SR from the ribosome, and SRP from the SR.


2012 ◽  
Vol 23 (16) ◽  
pp. 3027-3040 ◽  
Author(s):  
Ying Zhang ◽  
Uta Berndt ◽  
Hanna Gölz ◽  
Arlette Tais ◽  
Stefan Oellerer ◽  
...  

Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain.


2020 ◽  
Author(s):  
Jae Ho Lee ◽  
SangYoon Chung ◽  
Yu-Hsien Hwang Fu ◽  
Ruilin Qian ◽  
Xuemeng Sun ◽  
...  

AbstractSignal recognition particle (SRP) is a universally conserved targeting machine that couples the synthesis of ~30% of the proteome to their proper membrane localization1,2. In eukaryotic cells, SRP recognizes translating ribosomes bearing hydrophobic signal sequences and, through interaction with SRP receptor (SR), delivers them to the Sec61p translocase on the endoplasmic reticulum (ER) membrane1,2. How SRP ensures efficient and productive initiation of protein translocation at the ER is not well understood. Here, single molecule fluorescence spectroscopy demonstrates that cargo-loaded SRP induces a global compaction of SR, driving a >90 Å movement of the SRP•SR GTPase complex from the vicinity of the ribosome exit, where it initially assembles, to the distal site of SRP. These rearrangements bring translating ribosomes near the membrane, expose conserved Sec61p docking sites on the ribosome and weaken SRP’s interaction with the signal sequence on the nascent polypeptide, thus priming the translating ribosome for engaging the translocation machinery. Disruption of these rearrangements severely impairs cotranslational protein translocation and is the cause of failure in an SRP54 mutant linked to severe congenital neutropenia. Our results demonstrate that multiple largescale molecular motions in the SRP•SR complex are required to drive the transition from protein targeting to translocation; these post-targeting rearrangements provide potential new points for biological regulation as well as disease intervention.


1995 ◽  
Vol 128 (3) ◽  
pp. 273-282 ◽  
Author(s):  
J D Miller ◽  
S Tajima ◽  
L Lauffer ◽  
P Walter

The signal recognition particle receptor (SR) is required for the cotranslational targeting of both secretory and membrane proteins to the endoplasmic reticulum (ER) membrane. During targeting, the SR interacts with the signal recognition particle (SRP) which is bound to the signal sequence of the nascent protein chain. This interaction catalyzes the GTP-dependent transfer of the nascent chain from SRP to the protein translocation apparatus in the ER membrane. The SR is a heterodimeric protein comprised of a 69-kD subunit (SR alpha) and a 30-kD subunit (SR beta) which are associated with the ER membrane in an unknown manner. SR alpha and the 54-kD subunits of SRP (SRP54) each contain related GTPase domains which are required for SR and SRP function. Molecular cloning and sequencing of a cDNA encoding SR beta revealed that SR beta is a transmembrane protein and, like SR alpha and SRP54, is a member of the GTPase superfamily. Although SR beta defines its own GTPase subfamily, it is distantly related to ARF and Sar1. Using UV cross-linking, we confirm that SR beta binds GTP specifically. Proteolytic digestion experiments show that SR alpha is required for the interaction of SRP with SR. SR alpha appears to be peripherally associated with the ER membrane, and we suggest that SR beta, as an integral membrane protein, mediates the membrane association of SR alpha. The discovery of its guanine nucleotide-binding domain, however, makes it likely that its role is more complex than that of a passive anchor for SR alpha. These findings suggest that a cascade of three directly interacting GTPases functions during protein targeting to the ER membrane.


2007 ◽  
Vol 18 (7) ◽  
pp. 2636-2645 ◽  
Author(s):  
Peera Jaru-Ampornpan ◽  
Sowmya Chandrasekar ◽  
Shu-ou Shan

Cotranslational protein targeting to membranes is regulated by two GTPases in the signal recognition particle (SRP) and the SRP receptor; association between the two GTPases is slow and is accelerated 400-fold by the SRP RNA. Intriguingly, the otherwise universally conserved SRP RNA is missing in a novel chloroplast SRP pathway. We found that even in the absence of an SRP RNA, the chloroplast SRP and receptor GTPases can interact efficiently with one another; the kinetics of interaction between the chloroplast GTPases is 400-fold faster than their bacterial homologues, and matches the rate at which the bacterial SRP and receptor interact with the help of SRP RNA. Biochemical analyses further suggest that the chloroplast SRP receptor is pre-organized in a conformation that allows optimal interaction with its binding partner, so that conformational changes during complex formation are minimized. Our results highlight intriguing differences between the classical and chloroplast SRP and SRP receptor GTPases, and help explain how the chloroplast SRP pathway can mediate efficient targeting of proteins to the thylakoid membrane in the absence of the SRP RNA, which plays an indispensable role in all the other SRP pathways.


2018 ◽  
Vol 115 (24) ◽  
pp. E5487-E5496 ◽  
Author(s):  
Jae Ho Lee ◽  
Sowmya Chandrasekar ◽  
SangYoon Chung ◽  
Yu-Hsien Hwang Fu ◽  
Demi Liu ◽  
...  

Signal recognition particle (SRP) is a universally conserved targeting machine that mediates the targeted delivery of ∼30% of the proteome. The molecular mechanism by which eukaryotic SRP achieves efficient and selective protein targeting remains elusive. Here, we describe quantitative analyses of completely reconstituted human SRP (hSRP) and SRP receptor (SR). Enzymatic and fluorescence analyses showed that the ribosome, together with a functional signal sequence on the nascent polypeptide, are required to activate SRP for rapid recruitment of the SR, thereby delivering translating ribosomes to the endoplasmic reticulum. Single-molecule fluorescence spectroscopy combined with cross-complementation analyses reveal a sequential mechanism of activation whereby the ribosome unlocks the hSRP from an autoinhibited state and primes SRP to sample a variety of conformations. The signal sequence further preorganizes the mammalian SRP into the optimal conformation for efficient recruitment of the SR. Finally, the use of a signal sequence to activate SRP for receptor recruitment is a universally conserved feature to enable efficient and selective protein targeting, and the eukaryote-specific components confer upon the mammalian SRP the ability to sense and respond to ribosomes.


2014 ◽  
Vol 205 (5) ◽  
pp. 693-706 ◽  
Author(s):  
Ishu Saraogi ◽  
David Akopian ◽  
Shu-ou Shan

Efficient and accurate protein localization is essential to cells and requires protein-targeting machineries to both effectively capture the cargo in the cytosol and productively unload the cargo at the membrane. To understand how these challenges are met, we followed the interaction of translating ribosomes during their targeting by the signal recognition particle (SRP) using a site-specific fluorescent probe in the nascent protein. We show that initial recruitment of SRP receptor (SR) selectively enhances the affinity of SRP for correct cargos, thus committing SRP-dependent substrates to the pathway. Real-time measurement of cargo transfer from the targeting to translocation machinery revealed multiple factors that drive this event, including GTPase rearrangement in the SRP–SR complex, stepwise displacement of SRP from the ribosome and signal sequence by SecYEG, and elongation of the nascent polypeptide. Our results elucidate how active and sequential regulation of the SRP–cargo interaction drives efficient and faithful protein targeting.


1999 ◽  
Vol 63 (1) ◽  
pp. 161-173 ◽  
Author(s):  
Peter Fekkes ◽  
Arnold J. M. Driessen

SUMMARY Proteins that perform their activity within the cytoplasmic membrane or outside this cell boundary must be targeted to the translocation site prior to their insertion and/or translocation. In bacteria, several targeting routes are known; the SecB- and the signal recognition particle-dependent pathways are the best characterized. Recently, evidence for the existence of a third major route, the twin-Arg pathway, was gathered. Proteins that use either one of these three different pathways possess special features that enable their specific interaction with the components of the targeting routes. Such targeting information is often contained in an N-terminal extension, the signal sequence, but can also be found within the mature domain of the targeted protein. Once the nascent chain starts to emerge from the ribosome, competition for the protein between different targeting factors begins. After recognition and binding, the targeting factor delivers the protein to the translocation sites at the cytoplasmic membrane. Only by means of a specific interaction between the targeting component and its receptor is the cargo released for further processing and translocation. This mechanism ensures the high-fidelity targeting of premembrane and membrane proteins to the translocation site.


2007 ◽  
Vol 18 (7) ◽  
pp. 2728-2734 ◽  
Author(s):  
Niels Bradshaw ◽  
Peter Walter

The RNA component of the signal recognition particle (SRP) is universally required for cotranslational protein targeting. Biochemical studies have shown that SRP RNA participates in the central step of protein targeting by catalyzing the interaction of the SRP with the SRP receptor (SR). SRP RNA also accelerates GTP hydrolysis in the SRP·SR complex once formed. Using a reverse-genetic and biochemical analysis, we identified mutations in the E. coli SRP protein, Ffh, that abrogate the activity of the SRP RNA and cause corresponding targeting defects in vivo. The mutations in Ffh that disrupt SRP RNA activity map to regions that undergo dramatic conformational changes during the targeting reaction, suggesting that the activity of the SRP RNA is linked to the major conformational changes in the signal sequence-binding subunit of the SRP. In this way, the SRP RNA may coordinate the interaction of the SRP and the SR with ribosome recruitment and transfer to the translocon, explaining why the SRP RNA is an indispensable component of the protein targeting machinery.


Sign in / Sign up

Export Citation Format

Share Document