scholarly journals The CD4−CD8− MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool

2018 ◽  
Vol 115 (49) ◽  
pp. E11513-E11522 ◽  
Author(s):  
Joana Dias ◽  
Caroline Boulouis ◽  
Jean-Baptiste Gorin ◽  
Robin H. G. A. van den Biggelaar ◽  
Kerri G. Lal ◽  
...  

Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the MHC class I-like protein MR1. Human MAIT cells predominantly express the CD8α coreceptor (CD8+), with a smaller subset lacking both CD4 and CD8 (double-negative, DN). However, it is unclear if these two MAIT cell subpopulations distinguished by CD8α represent functionally distinct subsets. Here, we show that the two MAIT cell subsets express divergent transcriptional programs and distinct patterns of classic T cell transcription factors. Furthermore, CD8+ MAIT cells have higher levels of receptors for IL-12 and IL-18, as well as of the activating receptors CD2, CD9, and NKG2D, and display superior functionality following stimulation with riboflavin-autotrophic as well as riboflavin-auxotrophic bacterial strains. DN MAIT cells display higher RORγt/T-bet ratio, and express less IFN-γ and more IL-17. Furthermore, the DN subset displays enrichment of an apoptosis gene signature and higher propensity for activation-induced apoptosis. During development in human fetal tissues, DN MAIT cells are more mature and accumulate over gestational time with reciprocal contraction of the CD8+ subset. Analysis of the T cell receptor repertoire reveals higher diversity in CD8+ MAIT cells than in DN MAIT cells. Finally, chronic T cell receptor stimulation of CD8+ MAIT cells in an in vitro culture system supports the accumulation and maintenance of the DN subpopulation. These findings define human CD8+ and DN MAIT cells as functionally distinct subsets and indicate a derivative developmental relationship.

2018 ◽  
Author(s):  
Hanna M Ollila ◽  
Eilon Sharon ◽  
Ling Lin ◽  
Nasa Sinnott-Armstrong ◽  
Aditya Ambati ◽  
...  

AbstractType 1 narcolepsy (T1N) is a neurological condition, in which the death of hypocretin-producing neurons in the lateral hypothalamus leads to excessive daytime sleepiness and symptoms of abnormal Rapid Eye Movement (REM) sleep. Known triggers for narcolepsy are influenza-A infection and associated immunization during the 2009 H1N1 influenza pandemic. Here, we genotyped all remaining consented narcolepsy cases worldwide and assembled this with the existing genotyped individuals. We used this multi-ethnic sample in genome wide association study (GWAS) to dissect disease mechanisms and interactions with environmental triggers (5,339 cases and 20,518 controls). Overall, we found significant associations with HLA (2 GWA significant subloci) and 11 other loci. Six of these other loci have been previously reported (TRA, TRB, CTSH, IFNAR1, ZNF365 and P2RY11) and five are new (PRF1, CD207, SIRPG, IL27 and ZFAND2A). Strikingly, in vaccination-related cases GWA significant effects were found in HLA, TRA, and in a novel variant near SIRPB1. Furthermore, IFNAR1 associated polymorphisms regulated dendritic cell response to influenza-A infection in vitro (p-value =1.92*10−25). A partitioned heritability analysis indicated specific enrichment of functional elements active in cytotoxic and helper T cells. Furthermore, functional analysis showed the genetic variants in TRA and TRB loci act as remarkable strong chain usage QTLs for TRAJ*24 (p-value = 0.0017), TRAJ*28 (p-value = 1.36*10−10) and TRBV*4-2 (p-value = 3.71*10−117). This was further validated in TCR sequencing of 60 narcolepsy cases and 60 DQB1*06:02 positive controls, where chain usage effects were further accentuated. Together these findings show that the autoimmune component in narcolepsy is defined by antigen presentation, mediated through specific T cell receptor chains, and modulated by influenza-A as a critical trigger.


2013 ◽  
Vol 210 (11) ◽  
pp. 2305-2320 ◽  
Author(s):  
Rangsima Reantragoon ◽  
Alexandra J. Corbett ◽  
Isaac G. Sakala ◽  
Nicholas A. Gherardin ◽  
John B. Furness ◽  
...  

Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2–TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)–related class I–like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-d-ribityllumazine (rRL-6-CH2OH), specifically detect all human MAIT cells. Tetramer+ MAIT subsets were predominantly CD8+ or CD4−CD8−, although a small subset of CD4+ MAIT cells was also detected. Notably, most human CD8+ MAIT cells were CD8α+CD8β−/lo, implying predominant expression of CD8αα homodimers. Tetramer-sorted MAIT cells displayed a TH1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1–rRL-6-CH2OH tetramers detected CD4+, CD4−CD8− and CD8+ MAIT cells in Vα19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-β repertoire, and although the majority of human MAIT cells expressed TRAV1-2–TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population.


2019 ◽  
Author(s):  
Rajesh Lamichhane ◽  
Henry Galvin ◽  
Rachel F Hannaway ◽  
Sara M de la Harpe ◽  
Fran Munro ◽  
...  

AbstractMucosal associated invariant T (MAIT) cells are abundant unconventional T cells which can be stimulated either via their T cell receptor (TCR) or by innate cytokines. The MAIT cell TCR recognises a pyrimidine ligand, derived from riboflavin synthesising bacteria, bound to MR1. In infection, bacteria not only provide the pyrimidine ligand but also co-stimulatory signals, such as Toll-like receptor agonists, that can modulate TCR-mediated activation. Recently, type I interferons (T1-IFNs) have been identified as contributing to cytokine-mediated MAIT cell activation. However, it is unknown whether T1-IFNs also have a role during TCR-mediated MAIT cell activation. In this study, we investigated the co-stimulatory role of T1-IFNs during TCR-mediated activation of MAIT cells by the MR1 ligand 5-amino-6-D-ribitylaminouracil/methylglyoxal (5-A-RU/MG). We found that T1-IFNs were able to boost interferon-γ and granzyme B production in 5-A-RU/MG-stimulated MAIT cells. Similarly, influenza virus-induced T1-IFNs enhanced TCR-mediated MAIT cell activation. An essential role of T1-IFNs in regulating MAIT cell activation by riboflavin synthesising bacteria was also demonstrated. The co-stimulatory role of T1-IFNs was confirmed using liver-derived MAIT cells. T1-IFNs acted directly on MAIT cells to enhance their response to TCR stimulation. Overall, our findings establish an important immunomodulatory role of T1-IFNs during TCR-mediated MAIT cell activation.


2014 ◽  
Vol 211 (8) ◽  
pp. 1601-1610 ◽  
Author(s):  
Marielle C. Gold ◽  
James E. McLaren ◽  
Joseph A. Reistetter ◽  
Sue Smyk-Pearson ◽  
Kristin Ladell ◽  
...  

Mucosal-associated invariant T (MAIT) cells express a semi-invariant T cell receptor (TCR) that detects microbial metabolites presented by the nonpolymorphic major histocompatibility complex (MHC)–like molecule MR1. The highly conserved nature of MR1 in conjunction with biased MAIT TCRα chain usage is widely thought to indicate limited ligand presentation and discrimination within a pattern-like recognition system. Here, we evaluated the TCR repertoire of MAIT cells responsive to three classes of microbes. Substantial diversity and heterogeneity were apparent across the functional MAIT cell repertoire as a whole, especially for TCRβ chain sequences. Moreover, different pathogen-specific responses were characterized by distinct TCR usage, both between and within individuals, suggesting that MAIT cell adaptation was a direct consequence of exposure to various exogenous MR1-restricted epitopes. In line with this interpretation, MAIT cell clones with distinct TCRs responded differentially to a riboflavin metabolite. These results suggest that MAIT cells can discriminate between pathogen-derived ligands in a clonotype-dependent manner, providing a basis for adaptive memory via recruitment of specific repertoires shaped by microbial exposure.


Sign in / Sign up

Export Citation Format

Share Document