scholarly journals Hypoxia tolerance in the Norrin-deficient retina and the chronically hypoxic brain studied at single-cell resolution

2019 ◽  
Vol 116 (18) ◽  
pp. 9103-9114 ◽  
Author(s):  
Jacob S. Heng ◽  
Amir Rattner ◽  
Genevieve L. Stein-O’Brien ◽  
Briana L. Winer ◽  
Bryan W. Jones ◽  
...  

The mammalian CNS is capable of tolerating chronic hypoxia, but cell type-specific responses to this stress have not been systematically characterized. In the Norrin KO (NdpKO) mouse, a model of familial exudative vitreoretinopathy (FEVR), developmental hypovascularization of the retina produces chronic hypoxia of inner nuclear-layer (INL) neurons and Muller glia. We used single-cell RNA sequencing, untargeted metabolomics, and metabolite labeling from 13C-glucose to compare WT and NdpKO retinas. In NdpKO retinas, we observe gene expression responses consistent with hypoxia in Muller glia and retinal neurons, and we find a metabolic shift that combines reduced flux through the TCA cycle with increased synthesis of serine, glycine, and glutathione. We also used single-cell RNA sequencing to compare the responses of individual cell types in NdpKO retinas with those in the hypoxic cerebral cortex of mice that were housed for 1 week in a reduced oxygen environment (7.5% oxygen). In the hypoxic cerebral cortex, glial transcriptome responses most closely resemble the response of Muller glia in the NdpKO retina. In both retina and brain, vascular endothelial cells activate a previously dormant tip cell gene expression program, which likely underlies the adaptive neoangiogenic response to chronic hypoxia. These analyses of retina and brain transcriptomes at single-cell resolution reveal both shared and cell type-specific changes in gene expression in response to chronic hypoxia, implying both shared and distinct cell type-specific physiologic responses.

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205883 ◽  
Author(s):  
Joseph C. Mays ◽  
Michael C. Kelly ◽  
Steven L. Coon ◽  
Lynne Holtzclaw ◽  
Martin F. Rath ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yafei Lyu ◽  
Randy Zauhar ◽  
Nicholas Dana ◽  
Christianne E. Strang ◽  
Jian Hu ◽  
...  

AbstractAge‐related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes. Comparison of macula and peripheral retinal regions found no cell-type differences but did identify 50 differentially expressed genes (DEGs) with about 1/3 expressed in cones. Integration of our single-cell data with bulk RNA sequencing data from normal and AMD donors showed compositional changes more pronounced in macula in rods, microglia, endothelium, Müller glia, and astrocytes in the transition from normal to advanced AMD. KEGG pathway analysis of our normal vs. advanced AMD eyes identified enrichment in complement and coagulation pathways, antigen presentation, tissue remodeling, and signaling pathways including PI3K-Akt, NOD-like, Toll-like, and Rap1. These results showcase the use of single-cell RNA sequencing to infer cell-type compositional and cell-type-specific gene expression changes in intact bulk tissue and provide a foundation for investigating molecular mechanisms of retinal disease that lead to new therapeutic targets.


Author(s):  
Sarah A. Dugger ◽  
Ryan S. Dhindsa ◽  
Gabriela De Almeida Sampaio ◽  
Elizabeth E. Rafikian ◽  
Sabrina Petri ◽  
...  

AbstractHeterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated neuroanatomical abnormalities, global developmental delay and impaired ultrasonic vocalizations, and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum—a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlighted the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms, and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.


Author(s):  
Jun Cheng ◽  
Wenduo Gu ◽  
Ting Lan ◽  
Jiacheng Deng ◽  
Zhichao Ni ◽  
...  

Abstract Aims Hypertension is a major risk factor for cardiovascular diseases. However, vascular remodelling, a hallmark of hypertension, has not been systematically characterized yet. We described systematic vascular remodelling, especially the artery type- and cell type-specific changes, in hypertension using spontaneously hypertensive rats (SHRs). Methods and results Single-cell RNA sequencing was used to depict the cell atlas of mesenteric artery (MA) and aortic artery (AA) from SHRs. More than 20 000 cells were included in the analysis. The number of immune cells more than doubled in aortic aorta in SHRs compared to Wistar Kyoto controls, whereas an expansion of MA mesenchymal stromal cells (MSCs) was observed in SHRs. Comparison of corresponding artery types and cell types identified in integrated datasets unravels dysregulated genes specific for artery types and cell types. Intersection of dysregulated genes with curated gene sets including cytokines, growth factors, extracellular matrix (ECM), receptors, etc. revealed vascular remodelling events involving cell–cell interaction and ECM re-organization. Particularly, AA remodelling encompasses upregulated cytokine genes in smooth muscle cells, endothelial cells, and especially MSCs, whereas in MA, change of genes involving the contractile machinery and downregulation of ECM-related genes were more prominent. Macrophages and T cells within the aorta demonstrated significant dysregulation of cellular interaction with vascular cells. Conclusion Our findings provide the first cell landscape of resistant and conductive arteries in hypertensive animal models. Moreover, it also offers a systematic characterization of the dysregulated gene profiles with unbiased, artery type-specific and cell type-specific manners during hypertensive vascular remodelling.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Steven Schaffert ◽  
Aram Krauson ◽  
Elisabeth Walczak ◽  
Jonathan Nizar ◽  
Gwendolyn Holdgate ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi64-vi64
Author(s):  
Robert Suter ◽  
Vasileios Stathias ◽  
Anna Jermakowicz ◽  
Alexa Semonche ◽  
Michael Ivan ◽  
...  

Abstract Glioblastoma (GBM) remains the most common adult brain tumor, with poor survival expectations, and no new therapeutic modalities approved in the last decade. Our laboratories have recently demonstrated that the integration of a transcriptional disease signature obtained from The Cancer Genome Atlas’ GBM dataset with transcriptional cell drug-response signatures in the LINCS L1000 dataset yields possible combinatorial therapeutics. Considering the extreme intra-tumor heterogeneity associated with the disease, we hypothesize that the utilization of single-cell RNA-sequencing (scRNA-seq) of patient tumors will further strengthen our predictive model by providing insight on the unique transcriptomes of the cellular niches present within these tumors, and into the transcriptional dynamics of these same cellular niches. By sequencing single-cell transcriptomes from recurrent GBM tumors resected from patients at the University of Miami, and integrating our datasets with previously published scRNA-seq data from primary GBM tumors, we are able to gain additional insight into the differences between these clinical distinctions. We have analyzed the differential expression of kinases both across and within distinct cell populations of primary and recurrent GBM tumors. This transcriptional map of kinase expression represents the heterogeneity of potential targets within individual tumors and between recurrent and primary GBM. Additionally, by generating disease signatures unique to each cellular population, and integrating these with transcriptional drug-response signatures from LINCS, we are able to predict compounds to target specific cell populations within GMB tumors. Additional computational techniques such as RNA velocity analysis and cell cycle scoring elucidate temporal insights to further prioritize these cell-type specific therapeutics, and reveal the intra-cellular dynamics present within these tumors. Collectively, our studies suggest that we have developed a novel omics pipeline based on the single cell RNA-sequencing of individual GBM cells that addresses intra-tumor heterogeneity, and may lead to novel therapeutic combinations for the treatment of this incurable disease.


2019 ◽  
Vol 15 ◽  
pp. P1258-P1258 ◽  
Author(s):  
Tulsi Patel ◽  
Troy Carnwath ◽  
Laura Lewis-Tuffin ◽  
Mariet Allen ◽  
Sarah J. Lincoln ◽  
...  

Author(s):  
Meichen Dong ◽  
Aatish Thennavan ◽  
Eugene Urrutia ◽  
Yun Li ◽  
Charles M Perou ◽  
...  

Abstract Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.


Sign in / Sign up

Export Citation Format

Share Document