scholarly journals Actin protrusions push at apical junctions to maintain E-cadherin adhesion

2019 ◽  
Vol 117 (1) ◽  
pp. 432-438 ◽  
Author(s):  
John Xiao He Li ◽  
Vivian W. Tang ◽  
William M. Brieher

Cadherin-mediated cell–cell adhesion is actin-dependent, but the precise role of actin in maintaining cell–cell adhesion is not fully understood. Actin polymerization-dependent protrusive activity is required to push distally separated cells close enough to initiate contact. Whether protrusive activity is required to maintain adhesion in confluent sheets of epithelial cells is not known. By electron microscopy as well as live cell imaging, we have identified a population of protruding actin microspikes that operate continuously near apical junctions of polarized Madin-Darby canine kidney (MDCK) cells. Live imaging shows that microspikes containing E-cadherin extend into gaps between E-cadherin clusters on neighboring cells, while reformation of cadherin clusters across the cell–cell boundary correlates with microspike withdrawal. We identify Arp2/3, EVL, and CRMP-1 as 3 actin assembly factors necessary for microspike formation. Depleting these factors from cells using RNA interference (RNAi) results in myosin II-dependent unzipping of cadherin adhesive bonds. Therefore, actin polymerization-dependent protrusive activity operates continuously at cadherin cell–cell junctions to keep them shut and to prevent myosin II-dependent contractility from tearing cadherin adhesive contacts apart.

2019 ◽  
Author(s):  
John Xiao He Li ◽  
Vivian W. Tang ◽  
William M. Brieher

AbstractCadherin mediated cell-cell adhesion is actin dependent, but the precise role of actin in maintaining cell-cell adhesion is not fully understood. Actin polymerization-dependent protrusive activity is required to push distally separated cells close enough together to initiate contact. Whether protrusive activity is required to maintain adhesion in confluent sheets of epithelial cells is not known. By electron microscopy as well as live cell imaging, we have identified a population of protruding actin microspikes that operate continuously near apical junctions of polarized MDCK cells. Live imaging shows that microspikes containing E-cadherin extend into gaps between E-cadherin clusters on neighboring cells while reformation of cadherin clusters across the cell-cell boundary triggers microspike withdrawal. We identify Arp2/3, EVL, and CRMP-1 as three actin assembly factors necessary for microspike formation. Depleting these factors from cells using RNAi results in myosin II-dependent unzipping of cadherin adhesive bonds. Therefore, actin polymerization-dependent protrusive activity operates continuously at cadherin cell-cell junctions to keep them shut and to prevent myosin II-dependent contractility from tearing cadherin adhesive contacts apart.


2016 ◽  
Vol 27 (18) ◽  
pp. 2844-2856 ◽  
Author(s):  
Megha Vaman Rao ◽  
Ronen Zaidel-Bar

Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.


2007 ◽  
Vol 18 (6) ◽  
pp. 2203-2215 ◽  
Author(s):  
David Cohen ◽  
Yuan Tian ◽  
Anne Müsch

Kidney-derived Madin Darby canine kidney (MDCK) cells form lumina at their apices, and target luminal proteins to an intracellular vacuolar apical compartment (VAC) when prevented from polarizing. Hepatocytes, by contrast, organize their luminal surfaces (the bile canaliculi; BC) between their lateral membranes, and, when nonpolarized, they display an intracellular luminal compartment that is distinct from the VACs of MDCK cells. Overexpression of the serine/threonine kinase Par1b/EMK1/MARK2 induces BC-like lateral lumina and a hepatic-type intracellular luminal compartment in MDCK cells, suggesting a role for Par1b in the branching decision between kidney- and hepatic-type epithelial phenotypes. Here, we report that Par1b promotes lateral lumen polarity in MDCK cells independently of Ca2+-mediated cell–cell adhesion by inhibiting myosin II in a rho kinase-dependent manner. Polarization was inhibited by E-cadherin depletion but promoted by an adhesion-defective E-cadherin mutant. By contrast, apical surface formation in control MDCK cells required Ca2+-dependent cell–cell adhesion, but it occurred in the absence of E-cadherin. We propose that E-cadherin, when in an adhesion-incompetent state at the lateral domain, serves as targeting patch for the establishment of lateral luminal surfaces. E-cadherin depletion also reverted the hepatic-type intracellular luminal compartment in Par1b-MDCK cells to VACs characteristic of control MDCK cells, indicating a novel link between E-cadherin and luminal protein targeting.


2005 ◽  
Vol 10 (5) ◽  
pp. 435-445 ◽  
Author(s):  
Ryoko Okamoto ◽  
Kenji Irie ◽  
Akio Yamada ◽  
Tatsuo Katata ◽  
Atsunori Fukuhara ◽  
...  

2004 ◽  
Vol 287 (1) ◽  
pp. G104-G114 ◽  
Author(s):  
Matthew S. Keller ◽  
Toshihiko Ezaki ◽  
Rong-Jun Guo ◽  
John P. Lynch

A mature columnar intestinal epithelium develops late in embryogenesis and is maintained throughout the life of the organism. Although the mechanisms driving intestine-specific gene expression have been well studied, those promoting the acquisition of cell-cell junctions, columnar morphogenesis, and polarization have been less studied. The Cdx homeodomain transcription factors (Cdx1 and Cdx2) regulate intestine-specific gene expression and intestinal epithelial differentiation. We report here that Cdx expression induces E-cadherin activity and cell-cell adhesion in human COLO 205 cancer cells. Within days of Cdx1 or Cdx2 expression, a new homotypic cell-cell adhesion phenotype is induced. This is a specific response to Cdx, inasmuch as a Cdx1 mutant failed to elicit the effect. Additionally, Cdx-expressing COLO 205 cells demonstrate a reduced proliferative capacity and an increase in the mRNA expression of differentiation-associated genes. Electron micrographs of these cells demonstrate induction of tight, adherens, and desmosomal junctions, as well as a columnar shape and apical microvilli. Investigations of the adhesion phenotype determined that it was Ca2+dependent and could be blocked by an E-cadherin-blocking antibody. However, E-cadherin protein levels and intracellular distribution were unchanged. Cdx expression restored the ability of the cell membranes to adhere and undergo compaction. We conclude that Cdx1 or Cdx2 expression is sufficient to induce an E-cadherin-dependent adhesion of COLO 205 cells. This adhesion is associated with polarization and cell-cell membrane compaction, as well as induction of a differentiated gene-expression pattern. Ascertaining the mechanism for this novel Cdx effect may yield insight into the development of mature colonic epithelium.


2019 ◽  
Author(s):  
Yuqi Zhang ◽  
Krista M. Pettee ◽  
Kathryn N. Becker ◽  
Kathryn M. Eisenmann

AbstractBackgroundEpithelial ovarian cancer (EOC) cells disseminate within the peritoneal cavity, in part, via the peritoneal fluid as single cells, clusters, or spheroids. Initial single cell egress from a tumor can involve disruption of cell-cell adhesions as cells are shed from the primary tumor into the peritoneum. In epithelial cells, Adherens Junctions (AJs) are characterized by homotypic linkage of E-cadherins on the plasma membranes of adjacent cells. AJs are anchored to the intracellular actin cytoskeletal network through a complex involving E-cadherin, p120 catenin, β-catenin, and αE-catenin. However, the specific players involved in the interaction between the junctional E-cadherin complex and the underlying F-actin network remains unclear. Recent evidence indicates that mammalian Diaphanous-related (mDia) formins plays a key role in epithelial cell AJ formation and maintenance through generation of linear actin filaments. Binding of αE-catenin to linear F-actin inhibits association of the branched-actin nucleator Arp2/3, while favoring linear F-actin bundling. We previously demonstrated that loss of mDia2 was associated with invasive single cell egress from EOC spheroids through disruption of junctional F-actin.ResultsIn the current study, we now show that mDia2 has a role at adherens junctions (AJs) in EOC OVCA429 cells and human embryonic kidney (HEK) 293 cells through its association with αE-catenin and β-catenin. mDia2 depletion in EOC cells leads to reduction in actin polymerization and disruption of cell-cell junctions with decreased interaction between β-catenin and E-cadherin.ConclusionsOur results support a necessary role for mDia2 in AJ stability in EOC cell monolayers and indicate a critical role for mDia formins in regulating EOC AJs during invasive transitions.


2000 ◽  
Vol 279 (5) ◽  
pp. C1472-C1482 ◽  
Author(s):  
Ingrid Marschitz ◽  
Judith Lechner ◽  
Irene Mosser ◽  
Martina Dander ◽  
Roberto Montesano ◽  
...  

Overexpression of a constitutively active mutant of the mitogen-activated protein kinase kinase MEK1 (caMEK1) in epithelial Madin-Darby canine kidney (MDCK)-C7 cells disrupts morphogenesis, induces an invasive phenotype, and is associated with a reduced rate of cell proliferation. The role of cell-cell adhesion molecules and cell cycle proteins in these processes, however, has not been investigated. We now report loss of E-cadherin expression as well as a marked reduction of β- and α-catenin expression in transdifferentiated MDCK-C7 cells stably expressing caMEK1 (C7caMEK1) compared with epithelial mock-transfected MDCK-C7 (C7Mock1) cells. At least part of the remaining α-catenin was coimmunoprecipitated with β-catenin, whereas no E-cadherin was detected in β-catenin immunoprecipitates. In both cell types, the proteasome-specific protease inhibitors N-acetyl-Leu-Leu-norleucinal (ALLN) and lactacystin led to a time-dependent accumulation of β-catenin, including the appearance of high-molecular-weight β-catenin species. Quiescent as well as serum-stimulated C7caMEK1 cells showed a higher cyclin D expression than epithelial C7Mock1 cells. The MEK inhibitor U-0126 inhibited extracellular signal-regulated kinase phosphorylation and cyclin D expression in C7caMEK1 cells and almost abolished their already reduced cell proliferation rate. We conclude that the transdifferentiated and invasive phenotype of C7caMEK1 cells is associated with a diminished expression of proteins involved in cell-cell adhesion. Although β-catenin expression is reduced, C7caMEK1 cells show a higher expression of U-0126-sensitive cyclin D protein.


2015 ◽  
Vol 26 (7) ◽  
pp. 1249-1262 ◽  
Author(s):  
Guillermo A. Gomez ◽  
Robert W. McLachlan ◽  
Selwin K. Wu ◽  
Benjamin J. Caldwell ◽  
Elliott Moussa ◽  
...  

Cell–cell adhesion couples the contractile cortices of epithelial cells together, generating tension to support a range of morphogenetic processes. E-cadherin adhesion plays an active role in generating junctional tension by promoting actin assembly and cortical signaling pathways that regulate myosin II. Multiple myosin II paralogues accumulate at mammalian epithelial cell–cell junctions. Earlier, we found that myosin IIA responds to Rho-ROCK signaling to support junctional tension in MCF-7 cells. Although myosin IIB is also found at the zonula adherens (ZA) in these cells, its role in junctional contractility and its mode of regulation are less well understood. We now demonstrate that myosin IIB contributes to tension at the epithelial ZA. Further, we identify a receptor type-protein tyrosine phosphatase alpha–Src family kinase–Rap1 pathway as responsible for recruiting myosin IIB to the ZA and supporting contractile tension. Overall these findings reinforce the concept that orthogonal E-cadherin–based signaling pathways recruit distinct myosin II paralogues to generate the contractile apparatus at apical epithelial junctions.


1998 ◽  
Vol 143 (5) ◽  
pp. 1385-1398 ◽  
Author(s):  
Eva E. Sander ◽  
Sanne van Delft ◽  
Jean P. ten Klooster ◽  
Tim Reid ◽  
Rob A. van der Kammen ◽  
...  

We previously demonstrated that both Tiam1, an activator of Rac, and constitutively active V12Rac promote E-cadherin–mediated cell–cell adhesion in epithelial Madin Darby canine kidney (MDCK) cells. Moreover, Tiam1 and V12Rac inhibit invasion of Ras-transformed, fibroblastoid MDCK-f3 cells by restoring E-cadherin–mediated cell–cell adhesion. Here we show that the Tiam1/Rac-induced cellular response is dependent on the cell substrate. On fibronectin and laminin 1, Tiam1/Rac signaling inhibits migration of MDCK-f3 cells by restoring E-cadherin–mediated cell– cell adhesion. On different collagens, however, expression of Tiam1 and V12Rac promotes motile behavior, under conditions that prevent formation of E-cadherin adhesions. In nonmotile cells, Tiam1 is present in adherens junctions, whereas Tiam1 localizes to lamellae of migrating cells. The level of Rac activation by Tiam1, as determined by binding to a glutathione-S-transferase– PAK protein, is similar on fibronectin or collagen I, suggesting that rather the localization of the Tiam1/Rac signaling complex determines the substrate-dependent cellular responses. Rac activation by Tiam1 requires PI3-kinase activity. Moreover, Tiam1- but not V12Rac-induced migration as well as E-cadherin–mediated cell– cell adhesion are dependent on PI3-kinase, indicating that PI3-kinase acts upstream of Tiam1 and Rac.


Sign in / Sign up

Export Citation Format

Share Document