scholarly journals Linking energy loss in soft adhesion to surface roughness

2019 ◽  
Vol 116 (51) ◽  
pp. 25484-25490 ◽  
Author(s):  
Siddhesh Dalvi ◽  
Abhijeet Gujrati ◽  
Subarna R. Khanal ◽  
Lars Pastewka ◽  
Ali Dhinojwala ◽  
...  

A mechanistic understanding of adhesion in soft materials is critical in the fields of transportation (tires, gaskets, and seals), biomaterials, microcontact printing, and soft robotics. Measurements have long demonstrated that the apparent work of adhesion coming into contact is consistently lower than the intrinsic work of adhesion for the materials, and that there is adhesion hysteresis during separation, commonly explained by viscoelastic dissipation. Still lacking is a quantitative experimentally validated link between adhesion and measured topography. Here, we used in situ measurements of contact size to investigate the adhesion behavior of soft elastic polydimethylsiloxane hemispheres (modulus ranging from 0.7 to 10 MPa) on 4 different polycrystalline diamond substrates with topography characterized across 8 orders of magnitude, including down to the angstrom scale. The results show that the reduction in apparent work of adhesion is equal to the energy required to achieve conformal contact. Further, the energy loss during contact and removal is equal to the product of the intrinsic work of adhesion and the true contact area. These findings provide a simple mechanism to quantitatively link the widely observed adhesion hysteresis to roughness rather than viscoelastic dissipation.

Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


1992 ◽  
Vol 259 ◽  
Author(s):  
Selmer S. Wong ◽  
Shouleh Nikzad ◽  
Channing C. Ahn ◽  
Aimee L. Smith ◽  
Harry A. Atwater

ABSTRACTWe have employed reflection electron energy loss spectrometry (REELS), a surface chemical analysis technique, in order to analyze contaminant coverages at the submonolayer level during low-temperature in situ cleaning of hydrogen-terminated Si(100). The chemical composition of the surface was analyzed by measurements of the C K, O K and Si L2,3 core loss intensities at various stages of the cleaning. These results were quantified using SiC(100) and SiO2 as reference standards for C and O coverage. Room temperature REELS core loss intensity analysis after sample insertion reveals carbon at fractional monolayer coverage. We have established the REELS detection limit for carbon coverage to be 5±2% of a monolayer. A study of temperature-dependent hydrocarbon desorption from hydrogen-terminated Si(100) reveals the absence of carbon on the surface at temperatures greater than 200°C. This indicates the feasibility of epitaxial growth following an in situ low-temperature cleaning and also indicates the power of REELS as an in situ technique for assessment of surface cleanliness.


2005 ◽  
Vol 20 (8) ◽  
pp. 2004-2011 ◽  
Author(s):  
Yifang Cao ◽  
Dehua Yang ◽  
Wole Soboyejoy

In this paper, we present a method for determining the initial contact point and nanoindentation load–indentation depth characteristics for soft materials. The method is applied to the prediction of the load–indentation depth characteristics of polydimethylsiloxane. It involves the combined use of Johnson–Kendall–Roberts and Maugis–Dugdale adhesion theories and nonlinear least squares fitting in the determination of the initial contact point, the transition parameter, and the contact radius at zero contact load. The elastic modulus and the work of adhesion are also extracted from the load–indentation depth curves.


1995 ◽  
Vol 404 ◽  
Author(s):  
Kalpana S Katti ◽  
Maoxu Qian ◽  
Mehmet Sarikaya

AbstractIn this work a transmission electron microscopy (TEM) technique was used in obtaining local dielectric properties calculated from optical parameters for dynamic investigation of the effect of cubic to tetragonal phase transformation in barium titanate. In order to obtain in situ local dielectric during phase transformation, Kramers-Kronig relations were applied using the transmission electron energy loss (EELS) measurements. The optical excitations in the EELS spectra were consistent with the band structure results. The Re (1/ε) (real part of the dielectric function) obtained from the energy loss data indicated a change at the phase transformation. A broadening of the valence plasmon excitation suggested an order-disorder nature to the cubic to tetragonal transformation. In situ electron energy loss near edge structure (ELNES) studies from 500–700 eV energy range near the O-K edge exhibited a pre-edge feature that is associated with the Ti-L1, edge which further indicates an order-disorder nature to the phase transformation. The significance of the results is discussed.


2019 ◽  
Vol 61 (82) ◽  
pp. 1-11 ◽  
Author(s):  
Madison Smith ◽  
Jim Thomson

AbstractIn the marginal ice zone, surface waves drive motion of sea ice floes. The motion of floes relative to each other can cause periodic collisions, and drives the formation of pancake sea ice. Additionally, the motion of floes relative to the water results in turbulence generation at the interface between the ice and ocean below. These are important processes for the formation and growth of pancakes, and likely contribute to wave energy loss. Models and laboratory studies have been used to describe these motions, but there have been no in situ observations of relative ice velocities in a natural wave field. Here, we use shipboard stereo video to measure wave motion and relative motion of pancake floes simultaneously. The relative velocities of pancake floes are typically small compared to wave orbital motion (i.e. floes mostly follow the wave orbits). We find that relative velocities are well-captured by existing phase-resolved models, and are only somewhat over-estimated by using bulk wave parameters. Under the conditions observed, estimates of wave energy loss from ice–ocean turbulence are much larger than from pancake collisions. Increased relative pancake floe velocities in steeper wave fields may then result in more wave attenuation by increasing ice–ocean shear.


Author(s):  
Björn Lechthaler ◽  
Georg Ochs ◽  
Frank Mücklich ◽  
Martin Dienwiebel

Sign in / Sign up

Export Citation Format

Share Document