scholarly journals Kv2.1 channels play opposing roles in regulating membrane potential, Ca2+ channel function, and myogenic tone in arterial smooth muscle

2020 ◽  
Vol 117 (7) ◽  
pp. 3858-3866 ◽  
Author(s):  
Samantha C. O’Dwyer ◽  
Stephanie Palacio ◽  
Collin Matsumoto ◽  
Laura Guarina ◽  
Nicholas R. Klug ◽  
...  

The accepted role of the protein Kv2.1 in arterial smooth muscle cells is to form K+ channels in the sarcolemma. Opening of Kv2.1 channels causes membrane hyperpolarization, which decreases the activity of L-type CaV1.2 channels, lowering intracellular Ca2+ ([Ca2+]i) and causing smooth muscle relaxation. A limitation of this model is that it is based exclusively on data from male arterial myocytes. Here, we used a combination of electrophysiology as well as imaging approaches to investigate the role of Kv2.1 channels in male and female arterial myocytes. We confirmed that Kv2.1 plays a canonical conductive role but found it also has a structural role in arterial myocytes to enhance clustering of CaV1.2 channels. Less than 1% of Kv2.1 channels are conductive and induce membrane hyperpolarization. Paradoxically, by enhancing the structural clustering and probability of CaV1.2–CaV1.2 interactions within these clusters, Kv2.1 increases Ca2+ influx. These functional impacts of Kv2.1 depend on its level of expression, which varies with sex. In female myocytes, where expression of Kv2.1 protein is higher than in male myocytes, Kv2.1 has conductive and structural roles. Female myocytes have larger CaV1.2 clusters, larger [Ca2+]i, and larger myogenic tone than male myocytes. In contrast, in male myocytes, Kv2.1 channels regulate membrane potential but not CaV1.2 channel clustering. We propose a model in which Kv2.1 function varies with sex: in males, Kv2.1 channels control membrane potential but, in female myocytes, Kv2.1 plays dual electrical and CaV1.2 clustering roles. This contributes to sex-specific regulation of excitability, [Ca2+]i, and myogenic tone in arterial myocytes.

1989 ◽  
Vol 67 (4) ◽  
pp. 251-262 ◽  
Author(s):  
Kanji Nakatsu ◽  
Jack Diamond

The hypothesis that the relaxant action of many drugs on vascular and other smooth muscle is mediated by increases in intracellular cGMP, the "cGMP hypothesis," is gaining wide acceptance. While much information supporting this idea can be found in the literature, there is also a significant amount of information indicating that an elevation in the tissue content of cGMP is by itself insufficient to cause smooth muscle relaxation. The literature is reviewed with reference to the criteria that need to be fulfilled to consider cGMP as the second messenger mediating relaxation of smooth muscle by a drug; i.e., activation of guanylate cyclase, elevation of tissue content of cGMP, potentiation by phosphodiesterase inhibitors, antagonism by inhibitors of cGMP synthesis, and production of relaxation by cGMP analogues. For each criterion, key observations supporting the hypothesis are considered, followed by examples of important observations not consistent with the hypothesis. It is concluded that in some smooth muscles, for example, rat myometrium and vas deferens, cGMP is not a mediator of drug-induced relaxation. In other smooth muscles, including vascular smooth muscle, cGMP appears to play an important role in the relaxation process; but current evidence suggests that other factors are also important and that the cGMP hypothesis may need to be modified.Key words: cGMP, vascular relaxation, smooth muscle relaxation, vasodilators.


1991 ◽  
Vol 260 (3) ◽  
pp. H698-H701 ◽  
Author(s):  
J. L. Dinerman ◽  
D. L. Lawson ◽  
J. L. Mehta

To evaluate the role of endothelium in nitroglycerin (NTG)-mediated vascular relaxation, epinephrine-contracted rat thoracic aortic segments with and without intact endothelium were exposed to NTG (10(-10) to 10(-5) M). Aortic segments with intact (endo+, n = 15) and denuded endothelium (endo-, n = 9) exhibited typical NTG-induced relaxation. However, the mean effective concentration of NTG was lower for endo- than for endo+ segments (P less than 0.001). To determine if this phenomenon related to nitric oxide (NO) generation by endothelium, six endo+ segments were treated with NG-monomethyl-L-arginine (L-NMMA), an inhibitor of NO production. These endo+ segments exhibited greater (P less than 0.001) relaxation in response to NTG than the untreated endo+ segments. Oxyhemoglobin, an inhibitor of guanylate cyclase activation, greatly diminished NTG-mediated relaxation of all aortic segments. To determine if the enhanced NTG-mediated relaxation of endo- segments was unique to the guanosine 3',5'-cyclic monophosphate-dependent vasodilator NTG, other endo+ and endo- segments were exposed to adenosine 3',5'-cyclic monophosphate-dependent vasodilator papaverine (10(-8) to 10(-4) M), and no difference in EC50 was noted between endo+ and endo- segments. Thus endothelium attenuates NTG-mediated vasorelaxation, and this attenuation is abolished by inhibition of endothelial NO production with L-NMMA. These observations indicate that endothelium is a dynamic modulator of vascular smooth muscle relaxant effects of NTG. This modulation appears to result from a competitive interaction between endothelial NO and NTG.


2002 ◽  
Vol 283 (2) ◽  
pp. L433-L444 ◽  
Author(s):  
Carmelle V. Remillard ◽  
Wei-Min Zhang ◽  
Larissa A. Shimoda ◽  
James S. K. Sham

Ca+spark has been implicated as a pivotal feedback mechanism for regulating membrane potential and vasomotor tone in systemic arterial smooth muscle cells (SASMCs), but little is known about its properties in pulmonary arterial smooth muscle cells (PASMCs). Using confocal microscopy, we identified spontaneous Ca2+ sparks in rat intralobar PASMCs and characterized their spatiotemporal properties and physiological functions. Ca2+ sparks of PASMCs had a lower frequency and smaller amplitude than cardiac sparks. They were abolished by inhibition of ryanodine receptors but not by inhibition of inositol trisphosphate receptors and L-type Ca2+ channels. Enhanced Ca2+ influx by BAY K8644, K+, or high Ca2+ caused a significant increase in spark frequency. Functionally, enhancing Ca2+ sparks with caffeine (0.5 mM) caused membrane depolarization in PASMCs, in contrast to hyperpolarization in SASMCs. Norepinephrine and endothelin-1 both caused global elevations in cytosolic Ca2+ concentration ([Ca2+]), but only endothelin-1 increased spark frequency. These results suggest that Ca2+ sparks of PASMCs are similar to those of SASMCs, originate from ryanodine receptors, and are enhanced by Ca2+ influx. However, they play a different modulatory role on membrane potential and are under agonist-specific regulation independent of global [Ca2+].


2001 ◽  
Vol 280 (5) ◽  
pp. C1090-C1096 ◽  
Author(s):  
C. Wu ◽  
C. H. Fry

The role of Na+/Ca2+ exchange in regulating intracellular Ca2+ concentration ([Ca2+]i) in isolated smooth muscle cells from the guinea pig urinary bladder was investigated. Incremental reduction of extracellular Na+ concentration resulted in a graded rise of [Ca2+]i; 50–100 μM strophanthidin also increased [Ca2+]i. A small outward current accompanied the rise of [Ca2+]i in low-Na+ solutions (17.1 ± 1.8 pA in 29.4 mM Na+). The quantity of Ca2+ influx through the exchanger was estimated from the charge carried by the outward current and was ∼30 times that which is necessary to account for the rise of [Ca2+]i, after correction was made for intracellular Ca2+ buffering. Ca2+ influx through the exchanger was able to load intracellular Ca2+ stores. It is concluded that the level of resting [Ca2+]i is not determined by the exchanger, and under resting conditions (membrane potential −50 to −60 mV), there is little net flux through the exchanger. However, a small rise of intracellular Na+ concentration would be sufficient to generate significant net Ca2+ influx.


2014 ◽  
Vol 741 ◽  
pp. 55-63 ◽  
Author(s):  
Jiehong Huang ◽  
Yu-li Luo ◽  
Yuan Hao ◽  
Yi-lin Zhang ◽  
Peng-xiao Chen ◽  
...  

2007 ◽  
Vol 6 (1) ◽  
pp. 78-82
Author(s):  
S. V. Gousakova

Influence of cytoskeleton modulation by Colchicine and Cytochalasine B on contractile reactions of smooth muscle segments of rat's aorta caused by physiologically active substances, the membrane's depolarization and cells' striction was investigated by mechanographical method. Microtubules and actinic elements of the cytoskeleton were established to participate in the development of hyper-potassic and phenylephrine -induced contractions as well as in the smooth muscle relaxation induced by cAMP. Cytochalasine B suppresses both kinds of aortic smooth muscle contractions more effectively than Colchicine. Contractile reactions at isoosmotic striction are suppressed only by Cytochalasine. Efficacy of cAMP signal system operating depends on actinic cyto-skeleton integrity.


Abstracts ◽  
1978 ◽  
pp. 793 ◽  
Author(s):  
S. Holzmann ◽  
A. Wurm ◽  
G. Pöch ◽  
W.R. Kukovetz

Sign in / Sign up

Export Citation Format

Share Document