scholarly journals Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells

2020 ◽  
Vol 117 (47) ◽  
pp. 29684-29690
Author(s):  
Matthias Barone ◽  
Matthias Müller ◽  
Slim Chiha ◽  
Jiang Ren ◽  
Dominik Albat ◽  
...  

Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein–protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor (Kd=120 nM,MW=734Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein–protein interaction involved in actin filament processing and cell migration.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e12573-e12573
Author(s):  
Qi Zhang ◽  
Jin Zhang ◽  
Sihong Lu ◽  
Nan Shao ◽  
Ying Lin

e12573 Background: Angiogenesis is key for metastasis and predicts a poor prognosis in breast cancer. Among the pro-angiogenic factors, interleukin-8 (IL-8) could be secreted by tumor cells mediated by microRNA-200 family (miR-200s). Long non-coding RNA (LncRNA), was reported to absorb microRNA to play multiple roles in various diseases including breast cancer. Our preliminary results recognized lncRNA NR2F1 through Agilent Human LncRNA array from breast cancer cells overexpressing IL-8. However, the relationship between LncRNA NR2F1 and breast cancer angiogenesis remains unknown. Methods: Breast cancer cell migration, invasion, proliferation and angiogenesis were assessed by Transwell, CCK8, tube formation, and wound healing assays. The expression of LncRNA NR2F1, miR-200s and IL-8 were detected by qPCR, Western blotting and ELISA. Breast cancer metastasis and angiogenesis in vivo were measured in a zebrafish model. Results: We found that the basal expression of lncRNA NR2F1 is higher in breast cancer cell lines than it in normal cells. In vitro, lncRNA NR2F1 induced breast cancer migration, invasion, and proliferation. Meanwhile, lncRNA NR2F1 promoted human umbilical vascular endothelial cell (HUVEC) proliferation, tube formation, and migration both via breast cancer conditioned medium and via direct HUVEC transfection. In the zebrafish model, lncRNA NR2F1 promoted breast cancer cell metastasis and neo-angiogenesis. Further study disclosed that lncRNA NR2F1 downregulated the expression of miR-200s, which in turn upregulated the expression of IL-8 in breast cancer cells. Conclusions: Our findings suggest that LncRNA NR2F1, as a potential promoter of breast cancer, may induce breast cancer angiogenesis through IL-8/lncRNA NR2F1/miR-200s/IL-8 loop.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adrianne Spencer ◽  
Andrew D. Sligar ◽  
Daniel Chavarria ◽  
Jason Lee ◽  
Darshil Choksi ◽  
...  

AbstractPhysical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.


2021 ◽  
Author(s):  
Duo You ◽  
Danfeng Du ◽  
Xueke Zhao ◽  
Xinmin Li ◽  
Minfeng Ying ◽  
...  

Abstract Background: α-ketoglutarate (α-KG) is the substrate to hydoxylate collagen and hypoxia-inducible factor-1α (HIF-1α), which are important for cancer metastasis. Previous studies showed that upregulation of collagen prolyl 4-hydroxylase in breast cancer cells stabilizes HIF-1α via depleting α-KG in breast cancer cells. We propose that mitochondrial malate enzyme 2 (ME2) may also affect HIF-1α via modulating α-KG level in breast cancer cells. Methods: ME2 protein expression was evaluated by immunohistochemistry on 100 breast cancer patients and correlated with clinicopathological indicators. The effect of ME2 knockout on cancer metastasis was evaluated by an orthotopic breast cancer model. The effect of ME2 knockout or knockdown on the levels of α-KG and HIF-1α protein in breast cancer cell lines (4T1 and MDA-MB-231) was determined in vitro and in vivo.Results: The high expression of ME2 was observed in the human breast cancerous tissues compared to the matched precancerous tissues (P=0.000). The breast cancer patients with a high expression of ME2 had an inferior survival than the patients with low expression of ME2 (P=0.019). ME2 high expression in breast cancer tissues was also related with lymph node metastasis (P=0.016), pathological staging (P=0.033) and vascular cancer embolus (P=0.014). In a 4T1 orthotopic breast cancer model, ME2 knockout significantly inhibited lung metastasis. In the tumors formed by ME2 knockout 4T1 cells, α-KG level significantly increased, collagen hydroxylation level did not change significantly, but HIF-1α protein level significantly decreased, in comparison to control. In cell culture, ME2 knockout or knockdown cells demonstrated a significantly higher α-KG level but significantly lower HIF-1α protein level than control cells under hypoxia. Exogenous malate and α-KG exerted similar effect on HIF-1α in breast cancer cells to ME2 knockout or knockdown. Treatment with malate significantly decreased 4T1 breast cancer lung metastasis. ME2 expression was associated with HIF-1α level in human breast cancer samples (P=0.027).Conclusion: We provide evidence that upregulation of ME2 is associated with a poor prognosis of breast cancer patients and propose a mechanistic understanding of a link between ME2 and breast cancer metastasis.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e13002-e13002
Author(s):  
Yinghuan Cen ◽  
Chang Gong ◽  
Jun Li ◽  
Gehao Liang ◽  
Zihao Liu ◽  
...  

e13002 Background: We previously demonstrated that BRMS1L (breast cancer metastasis suppressor 1 like) suppresses breast cancer metastasis through HDAC1 recruitment and histone H3K9 deacetylation at the promoter of FZD10, a receptor for Wnt signaling. It is still unclear whether BRMS1L regulates organ-specific metastases, such as bone metastasis, the most prevalent metastatic site of breast cancer. Methods: Examination of the expression of BRMS1L in primary tumors, bone metastatic and other metastatic tissues from breast cancer patients was implemented using qRT-PCR and immunohistochemistry staining. To investigate the mechanism by which BRMS1L drives breast cancer bone metastasis, we tested the mRNA expression by qRT-PCR of a set of potential bone related genes (BRGs) based on PubMed database in MDA-MB-231 cells over expressing BRMS1L and MCF-7 cells knocking-down BRMS1L, and detected the expression of CXCR4 in these established cells by western blot. Transwell assays were performed to assess the migration abilities of breast cancer cells towards osteoblasts. ChIP (Chromatin Immuno-Precipitation) were employed to test the interaction between BRMS1L and CXCR4. Results: At both mRNA and protein levels, the expression of BRMS1L was significantly lower in bone metastatic sites than that in primary cancer tissues and other metastatic sites of breast cancer patients. CXCR4 was screened out in a set of BRGs and negatively correlated with the expression of BRMS1L in breast cancer cell lines. BRMS1L inhibited the migration of breast cancer cells towards osteoblasts through CXCL12/CXCR4 axis. In the presence of TSA treatment, breast cancer cell lines showed an increased expression of CXCR4 in a TSA concentration-dependent manner. In addition, ChIP assays verified that BRMS1L directly bound to the promoter region of CXCR4 and inhibited its transcription through promoter histone deacetylation. Conclusions: BRMS1L mediates the migration abilities of breast cancer cells to bone microenvironment via targeting CXCR4 and contributes to bone metastasis of breast cancer cells. Thus, BRMS1L may be a potential biomarker for predicting bone metastasis in breast cancer.


Bone Research ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Haemin Kim ◽  
Bongjun Kim ◽  
Sang Il Kim ◽  
Hyung Joon Kim ◽  
Brian Y. Ryu ◽  
...  

Abstract Bone destruction induced by breast cancer metastasis causes severe complications, including death, in breast cancer patients. Communication between cancer cells and skeletal cells in metastatic bone microenvironments is a principal element that drives tumor progression and osteolysis. Tumor-derived factors play fundamental roles in this form of communication. To identify soluble factors released from cancer cells in bone metastasis, we established a highly bone-metastatic subline of MDA-MB-231 breast cancer cells. This subline (mtMDA) showed a markedly elevated ability to secrete S100A4 protein, which directly stimulated osteoclast formation via surface receptor RAGE. Recombinant S100A4 stimulated osteoclastogenesis in vitro and bone loss in vivo. Conditioned medium from mtMDA cells in which S100A4 was knocked down had a reduced ability to stimulate osteoclasts. Furthermore, the S100A4 knockdown cells elicited less bone destruction in mice than the control knockdown cells. In addition, administration of an anti-S100A4 monoclonal antibody (mAb) that we developed attenuated the stimulation of osteoclastogenesis and bone loss by mtMDA in mice. Taken together, our results suggest that S100A4 released from breast cancer cells is an important player in the osteolysis caused by breast cancer bone metastasis.


2014 ◽  
Vol 1625 ◽  
Author(s):  
Jerald E. Dumas ◽  
Akia N. Parks ◽  
Manu O. Platt

ABSTRACTBreast cancer metastasis to bone continues to be a major clinical problem, and patient-to-patient variability in rates of disease progression and metastasis complicate treatment even further. This may be due to differences in the cancer cells, the osteoclasts, or the pre-metastatic niche, but all of these contribute to proteolytic remodeling necessary for osteolytic lesion establishment, primarily through secretion of cathepsin K, the most powerful human collagenase. There is debate about the relative contributions of breast cancer cells and osteoclasts and synergism between the two in altering the biochemical and biomechanical properties of the colonized bone, as these are difficult to parse with animal models. To quantify the relative contributions of breast cancer cells and osteoclasts in bone resorption, we have been developing engineered bone microenvironment tissue surrogates by adapting a poly(ester urethane) urea system embedded with microbone particles. Here, we report their use with MDA-MB-231 breast cancer cells and RAW264.7 derived osteoclasts, to provide temporal, multiscale reporters of bone resorption that can be measured non-destructively: 1) collagen degradation measured by C-terminal collagen fragment release, 2) mineral dissolution by measuring calcium released with the calcium arsenazo assay, and also show their beneficial effects in upregulating cathepsin K expression compared to tissue culture polystyrene controls. These more natural derived bone surrogates may be useful tools in mimicking bone metastatic niche and determining differences between proteolytic activity of different patients’ tumor and bone resident cells in a controlled manner.


2020 ◽  
Vol 21 (19) ◽  
pp. 7345 ◽  
Author(s):  
Mohamed Zakaria Nassef ◽  
Daniela Melnik ◽  
Sascha Kopp ◽  
Jayashree Sahana ◽  
Manfred Infanger ◽  
...  

Breast cancer is the leading cause of cancer death in females. The incidence has risen dramatically during recent decades. Dismissed as an “unsolved problem of the last century”, breast cancer still represents a health burden with no effective solution identified so far. Microgravity (µg) research might be an unusual method to combat the disease, but cancer biologists decided to harness the power of µg as an exceptional method to increase efficacy and precision of future breast cancer therapies. Numerous studies have indicated that µg has a great impact on cancer cells; by influencing proliferation, survival, and migration, it shifts breast cancer cells toward a less aggressive phenotype. In addition, through the de novo generation of tumor spheroids, µg research provides a reliable in vitro 3D tumor model for preclinical cancer drug development and to study various processes of cancer progression. In summary, µg has become an important tool in understanding and influencing breast cancer biology.


2019 ◽  
Vol 51 (8) ◽  
pp. 791-798 ◽  
Author(s):  
Lu Min ◽  
Chuanyang Liu ◽  
Jingyu Kuang ◽  
Xiaomin Wu ◽  
Lingyun Zhu

Abstract MicroRNAs (miRNAs) are a class of endogenous noncoding genes that regulate gene expression at the posttranscriptional level. In recent decades, miRNAs have been reported to play important roles in tumor growth and metastasis, while some reported functions of a specific miRNA in tumorigenesis are contradictory. In this study, we reevaluated the role of miR-214, which has been reported to serve as an oncogene or anti-oncogene in breast cancer metastasis. We found that miR-214 inhibited breast cancer via targeting RNF8, a newly identified regulator that could promote epithelial–mesenchymal transition (EMT). Specifically, the survival rate of breast cancer patients was positively correlated with miR-214 levels and negatively correlated with RNF8 expression. The overexpression of miR-214 inhibited cell proliferation and invasion of breast cancer, while suppression of miR-214 by chemically modified antagomir enhanced the proliferation and invasion of breast cancer cells. Furthermore, miR-214 could modulate the EMT process via downregulating RNF8. To our knowledge, this is the first report that reveals the role of the miR-214–RNF8 axis in EMT, and our results demonstrate a novel mechanism for miR-214 acting as a tumor suppressor through the regulation of EMT.


Sign in / Sign up

Export Citation Format

Share Document