scholarly journals Area-specific thalamocortical synchronization underlies the transition from motor planning to execution

2021 ◽  
Vol 118 (6) ◽  
pp. e2012658118
Author(s):  
Abdulraheem Nashef ◽  
Rea Mitelman ◽  
Ran Harel ◽  
Mati Joshua ◽  
Yifat Prut

We studied correlated firing between motor thalamic and cortical cells in monkeys performing a delayed-response reaching task. Simultaneous recording of thalamocortical activity revealed that around movement onset, thalamic cells were positively correlated with cell activity in the primary motor cortex but negatively correlated with the activity of the premotor cortex. The differences in the correlation contrasted with the average neural responses, which were similar in all three areas. Neuronal correlations reveal functional cooperation and opposition between the motor thalamus and distinct motor cortical areas with specific roles in planning vs. performing movements. Thus, by enhancing and suppressing motor and premotor firing, the motor thalamus can facilitate the transition from a motor plan to execution.

2002 ◽  
Vol 88 (2) ◽  
pp. 1064-1072 ◽  
Author(s):  
Paul Cisek ◽  
John F. Kalaska

Recent studies have shown that gaze angle modulates reach-related neural activity in many cortical areas, including the dorsal premotor cortex (PMd), when gaze direction is experimentally controlled by lengthy periods of imposed fixation. We looked for gaze-related modulation in PMd during the brief fixations that occur when a monkey is allowed to look around freely without experimentally imposed gaze control while performing a center-out delayed arm-reaching task. During the course of the instructed-delay period, we found significant effects of gaze angle in 27–51% of PMd cells. However, for 90–95% of cells, these effects accounted for <20% of the observed discharge variance. The effect of gaze was significantly weaker than the effect of reach-related variables. In particular, cell activity during the delay period was more strongly related to the intended movement expressed in arm-related coordinates than in gaze-related coordinates. Under the same experimental conditions, many cells in medial parietal cortex exhibited much stronger gaze-related modulation and expressed intended movement in gaze-related coordinates. In summary, gaze direction-related modulation of cell activity is indeed expressed in PMd during the brief fixations that occur in natural oculomotor behavior, but its overall effect on cell activity is modest.


2007 ◽  
Vol 98 (4) ◽  
pp. 2008-2021 ◽  
Author(s):  
Kiyoshi Kurata

The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.


2015 ◽  
Vol 113 (7) ◽  
pp. 2812-2823 ◽  
Author(s):  
Aaron J. Suminski ◽  
Philip Mardoum ◽  
Timothy P. Lillicrap ◽  
Nicholas G. Hatsopoulos

A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery, and therefore, its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortexes exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Mohsen Omrani ◽  
Chantelle D Murnaghan ◽  
J Andrew Pruszynski ◽  
Stephen H Scott

Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey’s arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors.


2007 ◽  
Vol 98 (1) ◽  
pp. 488-501 ◽  
Author(s):  
M. A. Umilta ◽  
T. Brochier ◽  
R. L. Spinks ◽  
R. N. Lemon

To understand the relative contributions of primary motor cortex (M1) and area F5 of the ventral premotor cortex (PMv) to visually guided grasp, we made simultaneous multiple electrode recordings from the hand representations of these two areas in two adult macaque monkeys. The monkeys were trained to fixate, reach out and grasp one of six objects presented in a pseudorandom order. In M1 326 task-related neurons, 104 of which were identified as pyramidal tract neurons, and 138 F5 neurons were analyzed as separate populations. All three populations showed activity that distinguished the six objects grasped by the monkey. These three populations responded in a manner that generalized across different sets of objects. F5 neurons showed object/grasp related tuning earlier than M1 neurons in the visual presentation and premovement periods. Also F5 neurons generally showed a greater preference for particular objects/grasps than did M1 neurons. F5 neurons remained tuned to a particular grasp throughout both the premovement and reach-to-grasp phases of the task, whereas M1 neurons showed different selectivity during the different phases. We also found that different types of grasp appear to be represented by different overall levels of activity within the F5-M1 circuit. Altogether these properties are consistent with the notion that F5 grasping-related neurons play a role in translating visual information about the physical properties of an object into the motor commands that are appropriate for grasping, and which are elaborated within M1 for delivery to the appropriate spinal machinery controlling hand and digit muscles.


1991 ◽  
Vol 66 (3) ◽  
pp. 705-718 ◽  
Author(s):  
H. Mushiake ◽  
M. Inase ◽  
J. Tanji

1. Single-cell activity was recorded from three different motor areas in the cerebral cortex: the primary motor cortex (MI), supplementary motor area (SMA), and premotor cortex (PM). 2. Three monkeys (Macaca fuscata) were trained to perform a sequential motor task in two different conditions. In one condition (visually triggered task, VT), they reached to and touched three pads placed in a front panel by following lights illuminated individually from behind the pads. In the other condition (internally guided task, IT), they had to remember a predetermined sequence and press the three pads without visual guidance. In a transitional phase between the two conditions, the animals learned to memorize the correct sequence. Auditory instruction signals (tones of different frequencies) told the animal which mode it was in. After the instruction signals, the animals waited for a visual signal that triggered the first movement. 3. Neuronal activity was analyzed during three defined periods: delay period, premovement period, and movement period. Statistical comparisons were made to detect differences between the two behavioral modes with respect to the activity in each period. 4. Most, if not all, of MI neurons exhibited similar activity during the delay, premovement, and movement periods, regardless of whether the sequential motor task was visually guided or internally determined. 5. More than one-half of the SMA neurons were preferentially or exclusively active in relation to IT during both the premovement (55%) and movement (65%) periods. In contrast, PM neurons were more active (55% and 64% during the premovement and movement periods) in VT. 6. During the instructed-delay period, a majority of SMA neurons exhibited preferential or exclusive relation to IT whereas the activity in PM neurons was observed equally in different modes. 7. Two types of neurons exhibiting properties of special interest were observed. Sequence-specific neurons (active in a particular sequence only) were more common in SMA, whereas transition-specific neurons (active only at the transitional phase) were more common in PM. 8. Although a strict functional dichotomy is not acceptable, these observations support a hypothesis that the SMA is more related to IT, whereas PM is more involved in VT. 9. Some indications pointing to a functional subdivision of PM are obtained.


2006 ◽  
Vol 96 (3) ◽  
pp. 1492-1506 ◽  
Author(s):  
John G. O'Leary ◽  
Nicholas G. Hatsopoulos

Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys ( Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.


1997 ◽  
Vol 78 (1) ◽  
pp. 567-571 ◽  
Author(s):  
Hajime Mushiake ◽  
Yasuyuki Tanatsugu ◽  
Jun Tanji

Mushiake, Hajime, Yasuyuki Tanatsugu, and Jun Tanji. Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. J. Neurophysiol. 78: 567–571, 1997. We recorded 200 neurons from the ventral part of the premotor cortex (PMv) and 110 neurons from the primary motor cortex (MI) of a monkey performing a visually cued arm-reaching task with a delay. We compared neuronal activity in the premovement period while the monkey reached the target with the eyes fixating on either a left or right fixation target. Our data demonstrate that about half of the movement-related activity in the PMv was modulated by the direction of gaze. In contrast, a vast majority of the activity of MI neurons and about half of PMv neurons were not influenced by the direction of gaze. We further analyzed the movement-related activity during the reaching movement to targets at the top, bottom, left, and right of each fixation point. The magnitude of activity of neurons showing the gaze-direction selectivity was primarily determined by the position of the reaching target relative to the eye-fixation target, and not by the position of the target relative to the animal's body. These data suggest that a part of the coordinate transformation of the motor command signals concerning the direction of reaching from the retinotopic to body-centered frame of reference may occur at the level of premotor cortex but not in MI.


2012 ◽  
Vol 24 (12) ◽  
pp. 2348-2362 ◽  
Author(s):  
Liuba Papeo ◽  
Raffaella Ida Rumiati ◽  
Cinzia Cecchetto ◽  
Barbara Tomasino

Activity in frontocentral motor regions is routinely reported when individuals process action words and is often interpreted as the implicit simulation of the word content. We hypothesized that these neural responses are not invariant components of action word processing but are modulated by the context in which they are evoked. Using fMRI, we assessed the relative weight of stimulus features (i.e., the intrinsic semantics of words) and contextual factors, in eliciting word-related sensorimotor activity. Participants silently read action-related and state verbs after performing a mental rotation task engaging either a motor strategy (i.e., referring visual stimuli to their own bodily movements) or a visuospatial strategy. The mental rotation tasks were used to induce, respectively, a motor and a nonmotor “cognitive context” into the following silent reading. Irrespective of the verb category, reading in the motor context, compared with reading in the nonmotor context, increased the activity in the left primary motor cortex, the bilateral premotor cortex, and the right somatosensory cortex. Thus, the cognitive context induced by the preceding motor strategy-based mental rotation modulated word-related sensorimotor responses, possibly reflecting the strategy of referring a word meaning to one's own bodily activity. This pattern, common to action and state verbs, suggests that the context in which words are encountered prevails over the intrinsic semantics of the stimuli in mediating the recruitment of sensorimotor regions.


Sign in / Sign up

Export Citation Format

Share Document