scholarly journals Temporal evolution of both premotor and motor cortical tuning properties reflect changes in limb biomechanics

2015 ◽  
Vol 113 (7) ◽  
pp. 2812-2823 ◽  
Author(s):  
Aaron J. Suminski ◽  
Philip Mardoum ◽  
Timothy P. Lillicrap ◽  
Nicholas G. Hatsopoulos

A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery, and therefore, its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortexes exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought.

1997 ◽  
Vol 78 (1) ◽  
pp. 567-571 ◽  
Author(s):  
Hajime Mushiake ◽  
Yasuyuki Tanatsugu ◽  
Jun Tanji

Mushiake, Hajime, Yasuyuki Tanatsugu, and Jun Tanji. Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. J. Neurophysiol. 78: 567–571, 1997. We recorded 200 neurons from the ventral part of the premotor cortex (PMv) and 110 neurons from the primary motor cortex (MI) of a monkey performing a visually cued arm-reaching task with a delay. We compared neuronal activity in the premovement period while the monkey reached the target with the eyes fixating on either a left or right fixation target. Our data demonstrate that about half of the movement-related activity in the PMv was modulated by the direction of gaze. In contrast, a vast majority of the activity of MI neurons and about half of PMv neurons were not influenced by the direction of gaze. We further analyzed the movement-related activity during the reaching movement to targets at the top, bottom, left, and right of each fixation point. The magnitude of activity of neurons showing the gaze-direction selectivity was primarily determined by the position of the reaching target relative to the eye-fixation target, and not by the position of the target relative to the animal's body. These data suggest that a part of the coordinate transformation of the motor command signals concerning the direction of reaching from the retinotopic to body-centered frame of reference may occur at the level of premotor cortex but not in MI.


2021 ◽  
Vol 118 (6) ◽  
pp. e2012658118
Author(s):  
Abdulraheem Nashef ◽  
Rea Mitelman ◽  
Ran Harel ◽  
Mati Joshua ◽  
Yifat Prut

We studied correlated firing between motor thalamic and cortical cells in monkeys performing a delayed-response reaching task. Simultaneous recording of thalamocortical activity revealed that around movement onset, thalamic cells were positively correlated with cell activity in the primary motor cortex but negatively correlated with the activity of the premotor cortex. The differences in the correlation contrasted with the average neural responses, which were similar in all three areas. Neuronal correlations reveal functional cooperation and opposition between the motor thalamus and distinct motor cortical areas with specific roles in planning vs. performing movements. Thus, by enhancing and suppressing motor and premotor firing, the motor thalamus can facilitate the transition from a motor plan to execution.


2010 ◽  
Vol 22 (8) ◽  
pp. 1782-1793 ◽  
Author(s):  
Maryjane Wraga ◽  
Catherine M. Flynn ◽  
Holly K. Boyle ◽  
Gretchen C. Evans

Previous behavioral studies suggest that response measures related to the body, such as pointing, serve to anchor participants to their physical body during mental rotation tasks in which their perspective must be shifted elsewhere. This study investigated whether such measures engage spatial and low-level cortical motor areas of the brain more readily than non-body-related measures. We directly compared activation found in two imagined perspective rotation tasks, using responses that varied in the degree to which they emphasized the human body. In the body minimize condition, participants imagined rotating themselves around an object and judged whether a prescribed part of the object would be visible from the imagined viewpoint. In the body maximize condition, participants imagined rotating around the object and then located the prescribed object part with respect to their bodies. A direct comparison of neural activation in both conditions revealed distinct yet overlapping neural regions. The body maximize condition yielded activation in low-level cortical motor areas such as premotor cortex and primary motor cortex, as well as bilateral spatial processing areas. The body minimize condition yielded activation in nonmotoric egocentric processing regions. However, both conditions showed activation in the parietal–occipital region that is thought to be involved in egocentric transformations. These findings are discussed in the context of recent hypotheses regarding the role of the body percept in imagined egocentric transformations.


2007 ◽  
Vol 98 (4) ◽  
pp. 2008-2021 ◽  
Author(s):  
Kiyoshi Kurata

The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.


2010 ◽  
Vol 22 (7) ◽  
pp. 1623-1635 ◽  
Author(s):  
Michael V. Lombardo ◽  
Bhismadev Chakrabarti ◽  
Edward T. Bullmore ◽  
Sally J. Wheelwright ◽  
Susan A. Sadek ◽  
...  

Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. Stefan Greulich ◽  
Ramina Adam ◽  
Stefan Everling ◽  
Hansjörg Scherberger

Abstract Manipulation of an object requires us to transport our hand towards the object (reach) and close our digits around that object (grasp). In current models, reach-related information is propagated in the dorso-medial stream from posterior parietal area V6A to medial intraparietal area, dorsal premotor cortex, and primary motor cortex. Grasp-related information is processed in the dorso-ventral stream from the anterior intraparietal area to ventral premotor cortex and the hand area of primary motor cortex. However, recent studies have cast doubt on the validity of this separation in separate processing streams. We investigated in 10 male rhesus macaques the whole-brain functional connectivity of these areas using resting state fMRI at 7-T. Although we found a clear separation between dorso-medial and dorso-ventral network connectivity in support of the two-stream hypothesis, we also found evidence of shared connectivity between these networks. The dorso-ventral network was distinctly correlated with high-order somatosensory areas and feeding related areas, whereas the dorso-medial network with visual areas and trunk/hindlimb motor areas. Shared connectivity was found in the superior frontal and precentral gyrus, central sulcus, intraparietal sulcus, precuneus, and insular cortex. These results suggest that while sensorimotor processing streams are functionally separated, they can access information through shared areas.


2006 ◽  
Vol 96 (3) ◽  
pp. 1492-1506 ◽  
Author(s):  
John G. O'Leary ◽  
Nicholas G. Hatsopoulos

Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys ( Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.


2006 ◽  
Vol 96 (6) ◽  
pp. 3220-3230 ◽  
Author(s):  
Isaac Kurtzer ◽  
Troy M. Herter ◽  
Stephen H. Scott

The present study examined the activity of primate shoulder and elbow muscles using a novel reaching task. We enforced similar patterns of center-out movement while the animals countered viscous loads at their shoulder, elbow, both joints, or neither joint. Accordingly, we could examine reach-related activity during the unloaded condition and torque-related activity by comparing activity across load conditions. During unloaded reaching the upper arm muscles exhibited a bimodal distribution of preferred hand direction. Maximal reach-related activity occurred with hand movements mostly toward or away from the body. Arm muscles also exhibited a bimodal distribution of their preferred torque direction. Maximal torque-related activity typically occurred with shoulder-extension/elbow-flexion torque or shoulder-flexion/elbow-extension torque. Similar biases in reach-related and torque-related activity could be reproduced by optimizing a global measure of muscle activity. These biases were also observed in the neural activity of primary motor cortex (M1). The parallels between M1 and muscular activity demonstrate another link between motor cortical processing and the motor periphery and may reflect an optimization process performed by the sensorimotor system.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Steven Jack Jerjian ◽  
Maneesh Sahani ◽  
Alexander Kraskov

Pyramidal tract neurons (PTNs) within macaque rostral ventral premotor cortex (F5) and (M1) provide direct input to spinal circuitry and are critical for skilled movement control. Contrary to initial hypotheses, they can also be active during action observation, in the absence of any movement. A population-level understanding of this phenomenon is currently lacking. We recorded from single neurons, including identified PTNs, in (M1) (n = 187), and F5 (n = 115) as two adult male macaques executed, observed, or withheld (NoGo) reach-to-grasp actions. F5 maintained a similar representation of grasping actions during both execution and observation. In contrast, although many individual M1 neurons were active during observation, M1 population activity was distinct from execution, and more closely aligned to NoGo activity, suggesting this activity contributes to withholding of self-movement. M1 and its outputs may dissociate initiation of movement from representation of grasp in order to flexibly guide behaviour.


Sign in / Sign up

Export Citation Format

Share Document