scholarly journals One-dimensional spatial patterning along mitotic chromosomes: A mechanical basis for macroscopic morphogenesis

2020 ◽  
Vol 117 (43) ◽  
pp. 26749-26755
Author(s):  
Lingluo Chu ◽  
Zhangyi Liang ◽  
Maria V. Mukhina ◽  
Jay K. Fisher ◽  
John W. Hutchinson ◽  
...  

Spatial patterns are ubiquitous in both physical and biological systems. We have recently discovered that mitotic chromosomes sequentially acquire two interesting morphological patterns along their structural axes [L. Chu et al., Mol. Cell, 10.1016/j.molcel.2020.07.002 (2020)]. First, axes of closely conjoined sister chromosomes acquire regular undulations comprising nearly planar arrays of sequential half-helices of similar size and alternating handedness, accompanied by periodic kinks. This pattern, which persists through all later stages, provides a case of the geometric form known as a “perversion.” Next, as sister chromosomes become distinct parallel units, their individual axes become linked by bridges, which are themselves miniature axes. These bridges are dramatically evenly spaced. Together, these effects comprise a unique instance of spatial patterning in a subcellular biological system. We present evidence that axis undulations and bridge arrays arise by a single continuous mechanically promoted progression, driven by stress within the chromosome axes. We further suggest that, after sister individualization, this same stress also promotes chromosome compaction by rendering the axes susceptible to the requisite molecular remodeling. Thus, by this scenario, the continuous presence of mechanical stress within the chromosome axes could potentially underlie the entire morphogenetic chromosomal program. Direct analogies with meiotic chromosomes suggest that the same effects could underlie interactions between homologous chromosomes as required for gametogenesis. Possible mechanical bases for generation of axis stress and resultant deformations are discussed. Together, these findings provide a perspective on the macroscopic changes of organized chromosomes.

2020 ◽  
Author(s):  
Ronald Biggs ◽  
Ning Liu ◽  
Yiheng Peng ◽  
John F. Marko ◽  
Huanyu Qiao

Meiosis produces four haploid cells after two successive divisions in sexually reproducing organisms. A critical event during meiosis is construction of the synaptonemal complex (SC), a large, protein-based bridge that physically links homologous chromosomes. The SC facilitates meiotic recombination, chromosome compaction, and the eventual separation of homologous chromosomes at metaphase I. We present experiments directly measuring physical properties of captured mammalian meiotic prophase I chromosomes. Mouse meiotic chromosomes are about ten-fold stiffer than somatic mitotic chromosomes, even for genetic mutants lacking SYCP1, the central element of the SC. Meiotic chromosomes dissolve when treated with nucleases, but only weaken when treated with proteases, suggesting that the SC is not rigidly connected, and that meiotic prophase I chromosomes are a gel meshwork of chromatin, similar to mitotic chromosomes. These results are consistent with a liquid- or liquid-crystal SC, but with SC-chromatin stiff enough to mechanically drive crossover interference.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ronald J. Biggs ◽  
Ning Liu ◽  
Yiheng Peng ◽  
John F. Marko ◽  
Huanyu Qiao

Abstract Meiosis produces four haploid cells after two successive divisions in sexually reproducing organisms. A critical event during meiosis is construction of the synaptonemal complex (SC), a large, protein-based bridge that physically links homologous chromosomes. The SC facilitates meiotic recombination, chromosome compaction, and the eventual separation of homologous chromosomes at metaphase I. We present experiments directly measuring physical properties of captured mammalian meiotic prophase I chromosomes. Mouse meiotic chromosomes are about ten-fold stiffer than somatic mitotic chromosomes, even for genetic mutants lacking SYCP1, the central element of the SC. Meiotic chromosomes dissolve when treated with nucleases, but only weaken when treated with proteases, suggesting that the SC is not rigidly connected, and that meiotic prophase I chromosomes are a gel meshwork of chromatin, similar to mitotic chromosomes. These results are consistent with a liquid- or liquid-crystal SC, but with SC-chromatin stiff enough to mechanically drive crossover interference.


2019 ◽  
Vol 116 (37) ◽  
pp. 18423-18428 ◽  
Author(s):  
Huizhong Xu ◽  
Zhisong Tong ◽  
Qing Ye ◽  
Tengqian Sun ◽  
Zhenmin Hong ◽  
...  

During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure’s lateral elements (LEs). While the components of the mammalian chromosome axis/LE—including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2—are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.


1999 ◽  
Vol 146 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Stéphane Brunet ◽  
Angélica Santa Maria ◽  
Philippe Guillaud ◽  
Denis Dujardin ◽  
Jacek Z. Kubiak ◽  
...  

During meiosis, two successive divisions occur without any intermediate S phase to produce haploid gametes. The first meiotic division is unique in that homologous chromosomes are segregated while the cohesion between sister chromatids is maintained, resulting in a reductional division. Moreover, the duration of the first meiotic M phase is usually prolonged when compared with mitotic M phases lasting 8 h in mouse oocytes. We investigated the spindle assembly pathway and its role in the progression of the first meiotic M phase in mouse oocytes. During the first 4 h, a bipolar spindle forms and the chromosomes congress near the equatorial plane of the spindle without stable kinetochore– microtubule end interactions. This late prometaphase spindle is then maintained for 4 h with chromosomes oscillating in the central region of the spindle. The kinetochore–microtubule end interactions are set up at the end of the first meiotic M phase (8 h after entry into M phase). This event allows the final alignment of the chromosomes and exit from metaphase. The continuous presence of the prometaphase spindle is not required for progression of the first meiotic M phase. Finally, the ability of kinetochores to interact with microtubules is acquired at the end of the first meiotic M phase and determines the timing of polar body extrusion.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Johanna Liinamaria Syrjänen ◽  
Luca Pellegrini ◽  
Owen Richard Davies

The synaptonemal complex (SC) is an evolutionarily-conserved protein assembly that holds together homologous chromosomes during prophase of the first meiotic division. Whilst essential for meiosis and fertility, the molecular structure of the SC has proved resistant to elucidation. The SC protein SYCP3 has a crucial but poorly understood role in establishing the architecture of the meiotic chromosome. Here we show that human SYCP3 forms a highly-elongated helical tetramer of 20 nm length. N-terminal sequences extending from each end of the rod-like structure bind double-stranded DNA, enabling SYCP3 to link distant sites along the sister chromatid. We further find that SYCP3 self-assembles into regular filamentous structures that resemble the known morphology of the SC lateral element. Together, our data form the basis for a model in which SYCP3 binding and assembly on meiotic chromosomes leads to their organisation into compact structures compatible with recombination and crossover formation.


2005 ◽  
Vol 16 (1) ◽  
pp. 212-217 ◽  
Author(s):  
Rupert Öllinger ◽  
Manfred Alsheimer ◽  
Ricardo Benavente

Synaptonemal complexes (SCs) are evolutionary conserved, meiosis-specific structures that play a central role in synapsis of homologous chromosomes, chiasmata distribution, and chromosome segregation. However, it is still for the most part unclear how SCs do assemble during meiotic prophase. Major components of mammalian SCs are the meiosis-specific proteins SCP1, 2, and 3. To investigate the role of SCP1 in SC assembly, we expressed SCP1 in a heterologous system, i.e., in COS-7 cells that normally do not express SC proteins. Notably, under these experimental conditions SCP1 is able to form structures that closely resemble SCs (i.e., polycomplexes). Moreover, we show that mutations that modify the length of the central α-helical domain of SCP1 influence the width of polycomplexes. Finally, we demonstrate that deletions of the nonhelical N- or C-termini both affect polycomplex assembly, although in a different manner. We conclude that SCP1 is a primary determinant of SC assembly that plays a key role in synapsis of homologous chromosomes.


1972 ◽  
Vol 14 (4) ◽  
pp. 859-868 ◽  
Author(s):  
A. Dean Stock

The mitotic chromosomes of 33 species of chelonians representing 22 genera and six families were investigated. Chromosome number and morphology are the same for most members of a given family and range from 66 in Trionyx to 34 in Pelomedusa. Most emydid genera have 50 chromosomes. The karyotype of Chelydra (2n = 52) is similar to those of some testudinid and emydid genera and is unlike the 56 chromosome karyotype of kinosternid turtles. The three genera of tortoises examined, Gopherus, Testudo, and Geochelone, have 52 chromosomes, but Gopherus differs in karyotypic details. The karyotype of Geochelone is like that of Chelydra and the 52 chromosome genera of emydid turtles. The African pleurodiran Pelomedusa has three additional pairs of small acrocentric or telocentric chromosomes not present in the earlier described karyotype of Podocnemis. Examination of meiotic chromosomes revealed frequencies of chiasmata formation similar to those reported earlier. Sex chromosomes were not distinguishable.


Genetics ◽  
1973 ◽  
Vol 75 (4) ◽  
pp. 663-670
Author(s):  
V G Dev ◽  
D A Miller ◽  
O J Miller

ABSTRACT The mitotic chromosomes of several inbred strains of mice and a series of F1 hybrids have been analyzed by quinacrine staining and further characterized by the centromeric heterochromatin banding (C-banding). Inbred strains had the same amount of C-banding material on homologous chromosomes but showed variation in the amount on different chromosomes. F1 hybrids showed characteristics of each parent and it appears that the amount of C-banding on each chromosome is a simple inherited polymorphism. In this study 12 different chromosomes could be distinguished by their C-banding, and these can be used as normal chromosome markers.


Sign in / Sign up

Export Citation Format

Share Document