scholarly journals Kinetochore Fibers Are Not Involved in the Formation of the First Meiotic Spindle in Mouse Oocytes, but Control the Exit from the First Meiotic M Phase

1999 ◽  
Vol 146 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Stéphane Brunet ◽  
Angélica Santa Maria ◽  
Philippe Guillaud ◽  
Denis Dujardin ◽  
Jacek Z. Kubiak ◽  
...  

During meiosis, two successive divisions occur without any intermediate S phase to produce haploid gametes. The first meiotic division is unique in that homologous chromosomes are segregated while the cohesion between sister chromatids is maintained, resulting in a reductional division. Moreover, the duration of the first meiotic M phase is usually prolonged when compared with mitotic M phases lasting 8 h in mouse oocytes. We investigated the spindle assembly pathway and its role in the progression of the first meiotic M phase in mouse oocytes. During the first 4 h, a bipolar spindle forms and the chromosomes congress near the equatorial plane of the spindle without stable kinetochore– microtubule end interactions. This late prometaphase spindle is then maintained for 4 h with chromosomes oscillating in the central region of the spindle. The kinetochore–microtubule end interactions are set up at the end of the first meiotic M phase (8 h after entry into M phase). This event allows the final alignment of the chromosomes and exit from metaphase. The continuous presence of the prometaphase spindle is not required for progression of the first meiotic M phase. Finally, the ability of kinetochores to interact with microtubules is acquired at the end of the first meiotic M phase and determines the timing of polar body extrusion.

1992 ◽  
Vol 102 (3) ◽  
pp. 457-467 ◽  
Author(s):  
J.Z. Kubiak ◽  
M. Weber ◽  
G. Geraud ◽  
B. Maro

When metaphase II-arrested mouse oocytes (M II) are activated very soon after ovulation, they respond abortively by second polar body extrusion followed by another metaphase arrest (metaphase III, M III; Kubiak, 1989). The M II/M III transition resembles the natural transition between the first and second meiotic metaphases (M I/M II). We observed that a similar sequence of events takes place during these two transitions: after anaphase, a polar body is extruded, the microtubules of the midbody disappear rapidly and a new metaphase spindle forms. The MPM-2 monoclonal antibody (which reacts with phosphorylated proteins associated with the centrosome during M-phase) stains discrete foci of peri-centriolar material only in metaphase arrested oocytes; during both transitional periods, a diffuse staining is observed, suggesting that these centrosomal proteins are dephosphorylated, as in a normal interphase. However, the chromosomes always remain condensed and an interphase network of microtubules is never observed during the transitional periods. Incorporation of 32P into proteins increases specifically during the transitional periods. Pulse-chase experiments, after labeling of the oocytes in M phase with 32P, showed that a 62 kDa phosphoprotein band disappears at the time of polar body extrusion. Histone H1 kinase activity (which reflects the activity of the maturation promoting factor) drops during both transitional periods to the level characteristic of interphase and then increases when the new spindle forms. Both the M I/M II and M II/M III transitions require protein synthesis as demonstrated by the effect of puromycin. These results suggest that the two M-phase/M-phase transitions are probably driven by the same molecular mechanism.


Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ming-Hong Sun ◽  
Lin-Lin Hu ◽  
Chao-Ying Zhao ◽  
Xiang Lu ◽  
Yan-Ping Ren ◽  
...  

Abstract Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.


1993 ◽  
Vol 104 (3) ◽  
pp. 861-872 ◽  
Author(s):  
M.S. Szollosi ◽  
J.Z. Kubiak ◽  
P. Debey ◽  
H. de Pennart ◽  
D. Szollosi ◽  
...  

Mouse oocyte activation is followed by a peculiar period during which the interphase network of microtubules does not form and the chromosomes remain condensed despite the inactivation of MPF. To evaluate the role of protein phosphorylation during this period, we studied the effects of the protein kinase inhibitor 6-dimethylaminopurine (6-DMAP) on fertilization and/or parthenogenetic activation of metaphase II-arrested mouse oocytes. 6-DMAP by itself does not induce the inactivation of histone H1 kinase in metaphase II-arrested oocytes, and does not influence the dynamics of histone H1 kinase inactivation during oocyte activation. However, 6-DMAP inhibits protein phosphorylation after oocyte activation. In addition, the phosphorylated form of some proteins disappear earlier in oocytes activated in the presence of 6-DMAP than in the activated control oocytes. This is correlated with the acceleration of some post-fertilization morphological events, such as sperm chromatin decondensation and its transient recondensation, formation of the interphase network of microtubules and pronuclear formation. In addition, numerous abnormalities could be observed: (1) the spindle rotation and polar body extrusion are inhibited; (2) the exchange of protamines into histones seems to be impaired, as judged by the morphology of DNA fibrils by electron microscopy; (3) the formation of a new nuclear envelope around the sperm chromatin proceeds prematurely, while recondensation is not yet completed. These observations suggest that the 6-DMAP-sensitive kinase(s) is (are) involved in the control of post-fertilization events such as the formation of the interphase network of microtubules, the remodelling of sperm chromatin and pronucleus formation.


2013 ◽  
Vol 200 (5) ◽  
pp. 567-576 ◽  
Author(s):  
Kexi Yi ◽  
Boris Rubinstein ◽  
Jay R. Unruh ◽  
Fengli Guo ◽  
Brian D. Slaughter ◽  
...  

Polar body extrusion during oocyte maturation is critically dependent on asymmetric positioning of the meiotic spindle, which is established through migration of the meiosis I (MI) spindle/chromosomes from the oocyte interior to a subcortical location. In this study, we show that MI chromosome migration is biphasic and driven by consecutive actin-based pushing forces regulated by two actin nucleators, Fmn2, a formin family protein, and the Arp2/3 complex. Fmn2 was recruited to endoplasmic reticulum structures surrounding the MI spindle, where it nucleated actin filaments to initiate an initially slow and poorly directed motion of the spindle away from the cell center. A fast and highly directed second migration phase was driven by actin-mediated cytoplasmic streaming and occurred as the chromosomes reach a sufficient proximity to the cortex to activate the Arp2/3 complex. We propose that decisive symmetry breaking in mouse oocytes results from Fmn2-mediated perturbation of spindle position and the positive feedback loop between chromosome signal-induced Arp2/3 activation and Arp2/3-orchestrated cytoplasmic streaming that transports the chromosomes.


2007 ◽  
Vol 12 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Manqi Deng ◽  
Praveen Suraneni ◽  
Richard M. Schultz ◽  
Rong Li

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Fei Wang ◽  
Liang Zhang ◽  
Guang-Li Zhang ◽  
Zhen-Bo Wang ◽  
Xiang-Shun Cui ◽  
...  

2018 ◽  
Vol 34 (1) ◽  
pp. 381-403 ◽  
Author(s):  
Binyam Mogessie ◽  
Kathleen Scheffler ◽  
Melina Schuh

Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.


2010 ◽  
Vol 22 (9) ◽  
pp. 42
Author(s):  
S. Dalati ◽  
M. L. Day

Sperm entry into the oocyte triggers a signal transduction pathway resulting in intracellular calcium [Ca2+] oscillations that coincide with hyperpolarisations in membrane potential (Em). Ca2+ oscillations have been previously described and found to be important for embryo development, yet Em hyperpolarisations and their importance at fertilisation still remains unclear. Thimerosal, a sulfhydryl reagent, has been shown to mimic the physiological changes caused by sperm following fertilisation. It does this by direct sensitisation of the inositol 1,4,5-triphosphate receptor-1 to basal levels of inositol 1,4,5-triphopshate. Previous patch clamp analysis of unfertilised mouse oocytes has shown that thimerosal elicits simultaneous Em hyperpolarisations and Ca2+ oscillations. These results have lead us to hypothesise that hyperpolarisations in Em may be due to the activation of a Ca2+ activated Cl- channel (CaCC) present in the membrane of mouse oocytes. The present study aims to identify this CaCC and assess its role in early development following fertilisation. Hyperpolarisations induced by thimerosal were inhibited by niflumic acid, a selective blocker of CaCCs. The inhibition of Em hyperpolarisations suggests that a CaCC is present and plays an active role in initiating hyperpolarisations. To identify the function of the CaCC at fertilisation, in vitro fertilisation was performed in the presence of niflumic acid. Niflumic acid inhibited polar body extrusion and pronuclei formation; two events that are indicators of fertilisation. Furthermore, Ca2+ imaging experiments with the calcium sensitive dye fura 2-AM, demonstrated that in the presence of niflumic acid, Ca2+ oscillations induced by thimerosal are reduced in size, number and duration. Taken together these data suggest that the activation of a Ca2+ activated Cl– channel in the mouse oocyte may play an important role in the events occurring at fertilisation.


Development ◽  
1996 ◽  
Vol 122 (6) ◽  
pp. 1957-1964 ◽  
Author(s):  
P. Kalab ◽  
J.Z. Kubiak ◽  
M.H. Verlhac ◽  
W.H. Colledge ◽  
B. Maro

Mitogen-activated protein kinases (MAPK) become activated during the meiotic maturation of oocytes from many species; however, their molecular targets remain unknown. This led us to characterize the activation of the ribosomal subunit S6 kinase of Mr 82 X 10(3) - 92 X 10(3) (p90rsk; a major substrate of MAPK in somatic cells) in maturing mouse oocytes and during the first cell cycle of the mouse embryo. We assessed the phosphorylation state of p90rsk by examining the electrophoretic mobility shifts on immunoblots and measured the kinase activity of immunoprecipitated p90rsk on a S6-derived peptide. Germinal vesicle stage (GV) oocytes contained a doublet of Mr 82 × 10(3) and 84 × 10(3) with a low S6 peptide kinase activity (12% of the maximum level found in metaphase II oocytes). A band of Mr 86 × 10(3) was first observed 30 minutes after GV breakdown (GVBD) and became prominent within 2 to 3 hours. MAPK was not phosphorylated 1 hour after GVBD, when the p90rsk-specific S6 kinase activity reached 37 % of the M II level. 2 hours after GVBD, MAPK became phosphorylated and p90rsk kinase activity reached 86% of the maximum level. The p90rsk band of Mr 88 × 10(3), present in mature M II oocytes when S6 peptide kinase activity is maximum, appeared when MAPK phosphorylation was nearly complete (2.5 hours after GVBD). In activated eggs, the dephosphorylation of p90rsk to Mr 86 X 10(3) starts about 1 hour after the onset of pronuclei formation and continues very slowly until the beginning of mitosis, when the doublet of Mr 82 X 10(3) and 84 X 10(3) reappears. A role for a M-phase activated kinase (like p34cdc2) in p90rsk activation was suggested by the reappearance of the Mr 86 X 10(3) band during first mitosis and in 1-cell embryos arrested in M phase by nocodazole. The requirement of MAPK for the full activation of p90rsk during meiosis was demonstrated by the absence of the fully active Mr 88 X 10(3) band in maturing c-mos −/− oocytes, where MAPK is not activated. The inhibition of kinase activity in activated eggs by 6-DMAP after second polar body extrusion provided evidence that both MAPK- and p90rsk-specific phosphatases are activated at approximately the same time prior to pronuclei formation.


Sign in / Sign up

Export Citation Format

Share Document