scholarly journals Microbial dynamics of elevated carbon flux in the open ocean’s abyss

2021 ◽  
Vol 118 (4) ◽  
pp. e2018269118
Author(s):  
Kirsten E. Poff ◽  
Andy O. Leu ◽  
John M. Eppley ◽  
David M. Karl ◽  
Edward F. DeLong

In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems.

2020 ◽  
Author(s):  
Hannah L. Bourne ◽  
James K. B. Bishop ◽  
Elizabeth J. Connors ◽  
Todd J. Wood

Abstract. To understand the vertical variations of carbon fluxes in biologically productive waters, four autonomous Carbon Flux Explorers (CFEs) and ship-lowered CTD-interfaced particle-sensitive transmissometer and scattering sensors were deployed in a filament of offshore flowing recently upwelled water during the June 2017 California Current Ecosystem – Long Term Ecological Research process study. The Lagrangian CFEs operating at depths from 100–500 m yielded carbon flux and its partitioning with size from 30 µm–1 cm at three intense study locations within the filament and at a location outside the filament. Different particle classes (anchovy pellets, copepod pellets and > 1000 µm aggregates) dominated the 100–150 m fluxes during successive stages of the filament evolution as it progressed offshore. Fluxes were very high at all locations in the filament; below 150 m, flux was invariant or increased with depth at the two locations closer to the coast. Martin curve b factors for total particulate carbon flux were +0.1, +0.87, −0.27, and −0.39 at the three successively occupied locations within the plume, and in transitional waters, respectively. Particle transfer efficiencies between 100 to 500 m were far greater within both filament and California Current waters than calculated using a classic Martin b factor of −0.86. Interestingly, the flux profiles for all particles  90 %) of particle flux was carried by > 1000 µm sized aggregates. Mechanisms to explain a factor of three flux increase between 150 and 500 m at the mid plume location are investigated.


2014 ◽  
Vol 11 (9) ◽  
pp. 13623-13673 ◽  
Author(s):  
E. C. Laurenceau ◽  
T. W. Trull ◽  
D. M. Davies ◽  
S. G. Bray ◽  
J. Doran ◽  
...  

Abstract. The first KErguelen Ocean and Plateau compared Study (KEOPS1), conducted in the naturally iron-fertilised Kerguelen bloom, demonstrated that fecal material was the main pathway for exporting carbon to the deep ocean during summer (January–February~2005), suggesting a~limited role of direct export via phytodetrital aggregates. The KEOPS2 project re-investigated this issue during the spring bloom initiation (October–November 2011), when zooplankton communities may exert limited grazing pressure, and explored further the link between carbon flux, export efficiency and dominant sinking particles depending upon surface plankton community structure. Sinking particles were collected in polyacrylamide gel-filled and standard free-drifting sediment traps (PPS3/3), deployed at six stations between 100 and 400 m to examine flux composition, particle origin and their size distributions. Results revealed an important contribution of phytodetrital aggregates (49 ± 10% and 45 ± 22% of the total number and volume of particles respectively, all stations and depths averaged). This high contribution dropped when converted to carbon content (30 ± 16% of total carbon, all stations and depths averaged), cylindrical fecal pellets representing then the dominant fraction (56 ± 19%). At 100 and 200 m depth, iron and biomass enriched sites exhibited the highest carbon fluxes (maxima of 180 and 84 ± 27 mg C m−2 d−1; based on gel and PPS3/3 trap collection respectively), especially where large fecal pellets dominated over phytodetrital aggregates. Below these depths, carbon fluxes decreased (48 ± 21% decrease in average between 200 and 400 m), and mixed aggregates composed of phytodetritus and fecal matter dominated, suggesting an important role played by physical aggregation in deep carbon export. Export efficiencies determined from gels, PPS3/3 traps and 234Th disequilibria (200 m carbon flux/net primary productivity), were negatively correlated to net primary productivity with observed decreases from ~ 0.2 at low-iron sites to ~ 0.02 at high-iron sites. Varying phytoplankton communities and grazing pressure appear to explain this negative relationship. Our work emphasizes the need to consider detailed plankton community structure to accurately identify the controls on carbon export efficiency, which appear to include small spatio-temporal variations of ecosystem structure.


2015 ◽  
Vol 12 (12) ◽  
pp. 3831-3848 ◽  
Author(s):  
F. Planchon ◽  
D. Ballas ◽  
A.-J. Cavagna ◽  
A. R. Bowie ◽  
D. Davies ◽  
...  

Abstract. This study examined upper-ocean particulate organic carbon (POC) export using the 234Th approach as part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2). Our aim was to characterize the spatial and the temporal variability of POC export during austral spring (October–November 2011) in the Fe-fertilized area of the Kerguelen Plateau region. POC export fluxes were estimated at high productivity sites over and downstream of the plateau and compared to a high-nutrient low-chlorophyll (HNLC) area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities were observed at all stations in surface waters, indicating early scavenging by particles in austral spring. 234Th export was lowest at the reference station R-2 and highest in the recirculation region (E stations) where a pseudo-Lagrangian survey was conducted. In comparison 234Th export over the central plateau and north of the polar front (PF) was relatively limited throughout the survey. However, the 234Th results support that Fe fertilization increased particle export in all iron-fertilized waters. The impact was greatest in the recirculation feature (3–4 fold at 200 m depth, relative to the reference station), but more moderate over the central Kerguelen Plateau and in the northern plume of the Kerguelen bloom (~2-fold at 200 m depth). The C : Th ratio of large (>53 μm) potentially sinking particles collected via sequential filtration using in situ pumping (ISP) systems was used to convert the 234Th flux into a POC export flux. The C : Th ratios of sinking particles were highly variable (3.1 ± 0.1 to 10.5 ± 0.2 μmol dpm−1) with no clear site-related trend, despite the variety of ecosystem responses in the fertilized regions. C : Th ratios showed a decreasing trend between 100 and 200 m depth suggesting preferential carbon loss relative to 234Th possibly due to heterotrophic degradation and/or grazing activity. C : Th ratios of sinking particles sampled with drifting sediment traps in most cases showed very good agreement with ratios for particles collected via ISP deployments (>53 μm particles). Carbon export production varied between 3.5 ± 0.9 and 11.8 ± 1.3 mmol m−2 d−1 from the upper 100 m and between 1.8 ± 0.9 and 8.2 ± 0.9 mmol m−2 d−1 from the upper 200 m. The highest export production was found inside the PF meander with a range of 5.3 ± 1.0 to 11.8 ± 1.1 mmol m−2 d−1 over the 19-day survey period. The impact of Fe fertilization is highest inside the PF meander with 2.9–4.5-fold higher carbon flux at 200 m depth in comparison to the HNLC control station. The impact of Fe fertilization was significantly less over the central plateau (stations A3 and E-4W) and in the northern branch of the bloom (station F-L) with 1.6–2.0-fold higher carbon flux compared to the reference station R. Export efficiencies (ratio of export to primary production and ratio of export to new production) were particularly variable with relatively high values in the recirculation feature (6 to 27 %, respectively) and low values (1 to 5 %, respectively) over the central plateau (station A3) and north of the PF (station F-L), indicating spring biomass accumulation. Comparison with KEOPS1 results indicated that carbon export production is much lower during the onset of the bloom in austral spring than during the peak and declining phases in late summer.


2015 ◽  
Vol 12 (4) ◽  
pp. 1007-1027 ◽  
Author(s):  
E. C. Laurenceau-Cornec ◽  
T. W. Trull ◽  
D. M. Davies ◽  
S. G. Bray ◽  
J. Doran ◽  
...  

Abstract. The first KErguelen Ocean and Plateau compared Study (KEOPS1), conducted in the naturally iron-fertilised Kerguelen bloom, demonstrated that fecal material was the main pathway for exporting carbon to the deep ocean during summer (January–February 2005), suggesting a limited role of direct export via phytodetrital aggregates. The KEOPS2 project reinvestigated this issue during the spring bloom initiation (October–November 2011), when zooplankton communities may exert limited grazing pressure, and further explored the link between carbon flux, export efficiency and dominant sinking particles depending upon surface plankton community structure. Sinking particles were collected in polyacrylamide gel-filled and standard free-drifting sediment traps (PPS3/3), deployed at six stations between 100 and 400 m, to examine flux composition, particle origin and their size distributions. Results revealed an important contribution of phytodetrital aggregates (49 ± 10 and 45 ± 22% of the total number and volume of particles respectively, all stations and depths averaged). This high contribution dropped when converted to carbon content (30 ± 16% of total carbon, all stations and depths averaged), with cylindrical fecal pellets then representing the dominant fraction (56 ± 19%). At 100 and 200 m depth, iron- and biomass-enriched sites exhibited the highest carbon fluxes (maxima of 180 and 84 ± 27 mg C m-2 d-1, based on gel and PPS3/3 trap collection respectively), especially where large fecal pellets dominated over phytodetrital aggregates. Below these depths, carbon fluxes decreased (48 ± 21% decrease on average between 200 and 400 m), and mixed aggregates composed of phytodetritus and fecal matter dominated, suggesting an important role played by physical aggregation in deep carbon export. Export efficiencies determined from gels, PPS3/3 traps and 234Th disequilibria (200 m carbon flux/net primary productivity) were negatively correlated to net primary productivity with observed decreases from ~ 0.2 at low-iron sites to ~ 0.02 at high-iron sites. Varying phytoplankton communities and grazing pressure appear to explain this negative relationship. Our work emphasises the need to consider detailed plankton communities to accurately identify the controls on carbon export efficiency, which appear to include small spatio-temporal variations in ecosystem structure.


2021 ◽  
Vol 18 (10) ◽  
pp. 3053-3086
Author(s):  
Hannah L. Bourne ◽  
James K. B. Bishop ◽  
Elizabeth J. Connors ◽  
Todd J. Wood

Abstract. To understand the vertical variations in carbon fluxes in biologically productive waters, four autonomous carbon flux explorers (CFEs), ship-lowered CTD-interfaced particle-sensitive transmissometer and scattering sensors, and surface-drogued sediment traps were deployed in a filament of offshore flowing, recently upwelled water, during the June 2017 California Current Ecosystem – Long Term Ecological Research process study. The Lagrangian CFEs operating at depths from 100–500 m yielded carbon flux and its partitioning with size from 30 µm–1 cm at three intensive study locations within the filament and in waters outside the filament. Size analysis codes intended to enable long-term CFE operations independent of ships are described. Different particle classes (anchovy pellets, copepod pellets, and > 1000 µm aggregates) dominated the 100–150 m fluxes during successive stages of the filament evolution as it progressed offshore. Fluxes were very high at all locations in the filament; below 150 m, flux was invariant or increased with depth at the two locations closer to the coast. Martin curve b factors (± denotes 95 % confidence intervals) for total particulate carbon flux were +0.37 ± 0.59, +0.85 ± 0.31, −0.24 ± 0.68, and −0.45 ± 0.70 at the three successively occupied locations within the plume, and in transitional waters. Interestingly, the flux profiles for all particles < 400 µm were a much closer fit to the canonical Martin profile (b−0.86); however, most (typically > 90 %) of the particle flux was carried by > 1000 µm sized aggregates which increased with depth. Mechanisms to explain the factor of 3 flux increase between 150 and 500 m at the mid-plume location are investigated.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


2018 ◽  
Vol 37 (1) ◽  
pp. 210-222 ◽  
Author(s):  
Qunjian Yin ◽  
Weijia Zhang ◽  
Xuegong Li ◽  
Lihong Zhou ◽  
Xiaoqing Qi ◽  
...  

2018 ◽  
Author(s):  
Winifred M. Johnson ◽  
Krista Longnecker ◽  
Melissa C. Kido Soule ◽  
William A. Arnold ◽  
Maya P. Bhatia ◽  
...  

AbstractMarine sinking particles transport carbon from the surface and bury it in deep sea sediments where it can be sequestered on geologic time scales. The combination of the surface ocean food web that produces these particles and the particle-associated microbial community that degrades these particles, creates a complex set of variables that control organic matter cycling. We use targeted metabolomics to characterize a suite of small biomolecules, or metabolites, in sinking particles and compare their metabolite composition to that of the suspended particles in the euphotic zone from which they are likely derived. These samples were collected in the South Atlantic subtropical gyre, as well as in the equatorial Atlantic region and the Amazon River plume. The composition of targeted metabolites in the sinking particles was relatively similar throughout the transect, despite the distinct oceanic regions in which they were generated. Metabolites possibly derived from the degradation of nucleic acids and lipids, such as xanthine and glycine betaine, were an increased mole fraction of the targeted metabolites in the sinking particles relative to surface suspended particles, while algal-derived metabolites like the osmolyte dimethylsulfoniopropionate were a smaller fraction of the observed metabolites on the sinking particles. These compositional changes are shaped both by the removal of metabolites associated with detritus delivered from the surface ocean and by production of metabolites by the sinking particle-associated microbial communities. Further, they provide a basis for examining the types and quantities of metabolites that may be delivered to the deep sea by sinking particles.


2014 ◽  
Vol 11 (2) ◽  
pp. 2595-2621 ◽  
Author(s):  
T. M. Hill ◽  
C. R. Myrvold ◽  
H. J. Spero ◽  
T. P. Guilderson

Abstract. Deep-sea bamboo corals (order Gorgonacea, family Isididae) are known to record changes in water mass chemistry over decades to centuries. These corals are composed of a two-part skeleton of calcite internodes segmented by gorgonin organic nodes. We examine the spatial variability of bamboo coral organic node 13C/12C and 15N/14N from thirteen bamboo coral specimens sampled along the California margin (37–32° N; 792 to 2136 m depth). Radiocarbon analyses of the organic nodes show the presence of the anthropogenic bomb spike, indicating the corals utilize a surface-derived food source (pre-bomb D14C values of ∼ −100‰, post-bomb values to 82‰). Carbon and nitrogen isotope data from the organic nodes (13C = −15.9‰ to −19.2‰ 15N = 13.8‰ to 19.4‰) suggest selective feeding on surface-derived organic matter or zooplankton. A strong relationship between coral 15N and habitat depth indicate a potential archive of changing carbon export, with decreased 15N values reflecting reduced microbial degradation (increased carbon flux) at shallower depths. Using four multi-centennial length coral records, we interpret long-term 15N stability in the California Current. Organic node 13C values record differences in carbon isotope fractionation dictated by nearshore vs. offshore primary production. These findings imply strong coupling between primary production, pelagic food webs, and deep-sea benthic communities.


Sign in / Sign up

Export Citation Format

Share Document