scholarly journals Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics

2021 ◽  
Vol 118 (10) ◽  
pp. e2020909118
Author(s):  
Jason Ioannidis ◽  
Gunes Taylor ◽  
Debiao Zhao ◽  
Long Liu ◽  
Alewo Idoko-Akoh ◽  
...  

In birds, males are the homogametic sex (ZZ) and females the heterogametic sex (ZW). Primary sex determination is thought to depend on a sex chromosome gene dosage mechanism, and the most likely sex determinant is the Z chromosome gene Doublesex and Mab-3–Related Transcription factor 1 (DMRT1). To clarify this issue, we used a CRISPR-Cas9–based monoallelic targeting approach and sterile surrogate hosts to generate birds with targeted mutations in the DMRT1 gene. The resulting chromosomally male (ZZ) chicken with a single functional copy of DMRT1 developed ovaries in place of testes, demonstrating the avian sex-determining mechanism is based on DMRT1 dosage. These ZZ ovaries expressed typical female markers and showed clear evidence of follicular development. However, these ZZ adult birds with an ovary in place of testes were indistinguishable in appearance to wild-type adult males, supporting the concept of cell-autonomous sex identity (CASI) in birds. In experiments where estrogen synthesis was blocked in control ZW embryos, the resulting gonads developed as testes. In contrast, if estrogen synthesis was blocked in ZW embryos that lacked DMRT1, the gonads invariably adopted an ovarian fate. Our analysis shows that DMRT1 is the key sex determination switch in birds and that it is essential for testis development, but that production of estrogen is also a key factor in primary sex determination in chickens, and that this production is linked to DMRT1 expression.

Author(s):  
Jason Ioannidis ◽  
Gunes Taylor ◽  
Debiao Zhao ◽  
Long Liu ◽  
Alewo Idoko-Akoh ◽  
...  

AbstractIn birds, males are the homogametic sex (ZZ) and females the heterogametic sex (ZW), and primary sex determination is thought to depend on a sex chromosome gene dosage mechanism. Previous studies have suggested that the most likely sex-determinant is the Z chromosome gene DMRT1 (Doublesex and Mab-3 Related Transcription factor 1). To clarify this issue, we used a CRISPR-Cas9 based mono-allelic targeting approach and sterile surrogate hosts to generate birds with targeted mutations in the DMRT1 gene. The resulting chromosomally male (ZZ) chicken with a single functional copy of DMRT1 developed ovaries in place of testes, demonstrating the avian sex determining mechanism is based on DMRT1 dosage. These ZZ ovaries expressed typical female markers and showed clear evidence of follicular development. However, these ZZ adult birds with an ovary in place of testes were indistinguishable in appearance to wild type adult males, supporting the concept of cell-autonomous sex identity (CASI) in birds. In experiments where oestrogen synthesis was blocked in control ZW embryos, the resulting gonads developed as testes. In contrast, if oestrogen synthesis was blocked in ZW embryos that lacked DMRT1, the gonads invariably adopted an ovarian fate. Our analysis shows that DMRT1 is the key sex determination switch in birds and that it is essential for testis development, but that production of oestrogen is also a key factor in primary sex determination in chickens, and that this production is linked to DMRT1 expression.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 483
Author(s):  
Wen-Juan Ma ◽  
Paris Veltsos

Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.


2021 ◽  
Author(s):  
Charles Christian Riis Hansen ◽  
Kristen M. Westfall ◽  
Snaebjörn Pálsson

Abstract BackgroundWhole genomes are commonly assembled into a collection of scaffolds and often lack annotations of autosomes, sex chromosomes, and organelle genomes (i.e., mitochondrial and chloroplast). As these chromosome types differ in effective population size and can have highly disparate evolutionary histories, it is imperative to take this information into account when analysing genomic variation. Here we assessed the accuracy of four methods for identifying the homogametic sex chromosome in a small population using two whole genome sequences (WGS) and 133 RAD sequences of white-tailed eagles (Haliaeetus albicilla): i) difference in read depth per scaffold in a male and a female, ii) heterozygosity per scaffold in a male and a female, iii) mapping to a reference genome of a related species (chicken) with identified sex chromosomes, and iv) analysis of SNP-loadings from a principal components analysis (PCA), based on the low-depth RADseq data. ResultsThe best performing approach was the reference mapping (method iii), which identified 98.12% of the expected homogametic sex chromosome (Z). The read depth per scaffold (method i) identified 86.41% of the homogametic sex chromosome with few false positives. The SNP-loading scores (method iv) found 78.6% of the Z-chromosome and had a false positive discovery rate of more than 10%. The heterozygosity per scaffold (method ii) did not provide clear results due to a lack of diversity in both the Z and autosomal chromosomes, and potential interference from the heterogametic sex chromosome (W). The evaluation of these methods also revealed 10 Mb of likely PAR and gametologous regions.ConclusionIdentification of the homogametic sex chromosome in a small population is best accomplished by reference mapping or examining read depth differences between sexes.


2015 ◽  
Author(s):  
James R Walters ◽  
Thomas J Hardcastle ◽  
Chris Jiggins

The evolution of heterogametic sex chromosome is often ? but not always ? accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit ?incomplete? sex chromosome dosage compensation. However, some recent results from moths suggest that Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that at least some species of moths and butterflies possess an epigenetic sex chromosome dosage compensating mechanism that operates by reducing Z chromosome expression in males. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5-20% male-bias on the Z chromosome, depending on the tissue. Strong sex chromosome dosage effects have been previously in a pyralid moth. Thus our results reflect a mixture of previous patterns reported for Lepidoptera and bisect the emerging view that female-heterogametic ZW taxa have incomplete dosage compensation because they lack a chromosome-wide epigenetic mechanism mediating sex chromosome dosage compensation. In the case of Heliconius, sex chromosome dosage effects persist apparently despite such a mechanism. We also analyze chromosomal distributions of sex-biased genes and show an excess of male-biased and a dearth of female-biased genes on the Z chromosome relative to autosomes, consistent with predictions of sexually antagonistic evolution.


The male has proven to be the heterogametic sex in all mammals studied so far. As is well known, the males usually have the sex chromosomes XY and the females XX. In recent years, however, many exceptions from this general pattern have been discovered. With our present knowledge, the different sex chromosome mechanisms in mammals may be divided into five main groups, and the first of them into subgroups, as follows: (i) Species with XX/XY sex chromosomes: (a) X of original size (see below), Y small; (b) X large, Y small; (c) X large, Y large: (i) end-to-end association of X and Y at male meiosis, (ii) chiasma between X and Y at male meiosis. (ii) Species with XX/XY 1 Y 2 sex chromosomes. (iii) Species with X 1 X 1 X 2 X 2 /X 1 X 2 Y sex chromosomes. (iv) Species with complicated or unknown mechanisms for sex determination. (v) Species with mosaicism of the sex chromosomes, but apparently with an XX/XY mechanism for sex determination. The present contribution will mainly deal with unusual sex chromosome inheritance, that is the groups (ii), (iii) and (iv) above, but the other two groups will also be briefly discussed and examples will be given. Recently Raicu, Kirillova & Hamar (1969) described a new sex chromosome mechanism ( X 1 X 1 X 2 X 2 /X 1 X 2 Y 1 Y 2 ) in the vole Microtus arvalis , but this observation was not confirmed by Schmid (1969), who found an ordinary XX/XY mechanism with both X and Y readily identifiable and of ‘normal’ size, the X comprising 5.6% of ( n A + X) and Y being the smallest chromosome of the complement. Late DNA replication was demonstrated in the allocyclic X and in the Y. Also Wolf (1969) found normal sex chromosomes in this species with no multivalents at male meiosis.


1984 ◽  
Vol 43 (2) ◽  
pp. 173-180 ◽  
Author(s):  
K. Sittmann

SUMMARYThe heterogametic sex in birds (ZW) is female for presence of the W or for lack of a second Z chromosome. These alternatives can be distinguished given ZO or ZZW aneuploids and segregation of a Z-linked marker in their progeny. Having discovered the Z-linked cinnamon locus with two alleles (B, black eyes; b, red eyes), Durham observed 21 black-eyed daughters (BO or BbW) of bb cocks and B hens. Using Durham's data on sex–colour phenotypes of 14 young of two of the 21 matroclinous females show that the sex chromosome constitution of the two exceptional hens were more likely ZO than ZZW. This case plus that of Crew's (1983) trisomic rooster (ZZW) shows that sex determination in birds follows the ‘genic balance’ scheme as in Drosophila, not the ‘dominant Y’ scheme as in mammals.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Henrik R. Hallingbäck ◽  
Pascal Pucholt ◽  
Pär K. Ingvarsson ◽  
Ann Christin Rönnberg-Wästljung ◽  
Sofia Berlin

Abstract Background Sex chromosomes are in some species largely undifferentiated (homomorphic) with restricted sex determination regions. Homomorphic but different sex chromosomes are found in the closely related genera Populus and Salix indicating flexible sex determination systems, ideal for studies of processes involved in sex chromosome evolution. We have performed genome-wide association studies of sex and analysed sex chromosomes in a population of 265 wild collected Salix viminalis accessions and studied the sex determining locus. Results A total of 19,592 markers were used in association analyses using both Fisher’s exact tests and a single-marker mixed linear model, which resulted in 48 and 41 sex-associated (SA) markers respectively. Across all 48 SA markers, females were much more often heterozygous than males, which is expected if females were the heterogametic sex. The majority of the SA markers were, based on positions in the S. purpurea genome, located on chromosome 15, previously demonstrated to be the sex chromosome. Interestingly, when mapping the genotyping-by-sequencing sequence tag harbouring the two SA markers with the highest significance to the S. viminalis genomic scaffolds, five regions of very high similarity were found: three on a scaffold that represents a part of chromosome 15, one on a scaffold that represents a part of chromosome 9 and one on a scaffold not anchored to the genome. Based on segregation differences of the alleles at the two marker positions and on differences in PCR amplification between females and males we conclude that females had multiple copies of this DNA fragment (chromosome 9 and 15), whereas males only had one (chromosome 9). We therefore postulate that the female specific sequences have been copied from chromosome 9 and inserted on chromosome 15, subsequently developing into a hemizygous W chromosome linked region. Conclusions Our results support that sex determination in S. viminalis is controlled by one locus on chromosome 15. The segregation patterns observed at the SA markers furthermore confirm that S. viminalis females are the heterogametic sex. We also identified a translocation from chromosome 9 to the W chromosome.


2018 ◽  
Author(s):  
Kevin C. Deitz ◽  
Willem Takken ◽  
Michel A. Slotman

AbstractDosage compensation has evolved in concert with Y-chromosome degeneration in many taxa that exhibit heterogametic sex chromosomes. Dosage compensation overcomes the biological challenge of a "half dose" of X chromosome gene transcripts in the heterogametic sex. The need to equalize gene expression of a hemizygous X with that of autosomes arises from the fact that the X chromosomes retain hundreds of functional genes that are actively transcribed in both sexes and interact with genes expressed on the autosomes. Sex determination and heterogametic sex chromosomes have evolved multiple times in Diptera, and in each case the genetic control of dosage compensation is tightly linked to sex determination. In the Anopheles gambiae species complex (Culicidae), maleness is conferred by the Y-chromosome gene Yob, which despite its conserved role between species is polymorphic in its copy number between them. Previous work demonstrated that male An. gambiae s.s. males exhibit complete dosage compensation in pupal and adult stages. In the present study we have extended this analysis to three sister species in the An. gambiae complex: An. coluzzii, An. arabiensis, and An. quadriannulatus. In addition, we analyzed dosage compensation in bi-directional F1 hybrids between these species to determine if hybridization results in the mis-regulation and disruption of dosage compensation. Our results confirm that dosage compensation operates in the An. gambiae species complex through the hyper-transcription of the male X chromosome. Additionally, dosage compensation in hybrid males does not differ from parental males, indicating that hybridization does not result in the mis-regulation of dosage compensation.


2020 ◽  
Author(s):  
Zhiyong Wang ◽  
Shijun Xiao ◽  
Mingyi Cai ◽  
Zhaofang Han ◽  
Wanbo Li ◽  
...  

AbstractAutosomal origins of heterogametic sex chromosomes have been inferred frequently from suppressed recombination and gene degeneration manifested in incompletely differentiated sex chromosomes. However, the initial transition of an autosome region to a proto-sex locus has been not explored in depth. By assembling and analyzing a chromosome-level draft genome, we found a recent (evolved 0.26 million years ago), highly homologous, and dmrt1 containing sex-determination locus with slightly reduced recombination in large yellow croaker (Larimichthys crocea), a teleost species with genetic sex determination (GSD) and with undifferentiated sex chromosomes. We observed genomic homology and polymorphic segregation of the proto-sex locus between sexes. Expression of dmrt1 showed a stepwise increase in the development of testis, but not in the ovary. We infer that the inception of the proto-sex locus involves a few divergences in nucleotide sequences and slight suppression of recombination in an autosome region. In androgen-induced sex reversal of genetic females, in addition to dmrt1, genes in the conserved dmrt1 cluster, and the rest of the sex determination network were activated. We provided evidence that broad functional links were shared by genetic sex determination and environmental sex reversal.


1987 ◽  
Vol 232 (1267) ◽  
pp. 159-180 ◽  

Female mice reject skin grafts from intrastrain males because of the H-Y transplantation antigen. Those females produce antibodies that recognize a male-specific cell-surface antigen in serological tests. The serological antigen has also been called ‘H-Y’, but there is evidence that the two antigens are distinct. We therefore refer to the transplantation antigen as H-Yt, or transplantation H-Y, and to the serological antigen as serological H-Y, or simply H-Y, without prejudice whether these are the same or related or separate antigens. In this study, sex-specific expression of serological H-Y antigen was found in 25 new vertebrate species representing each of seven major vertebrate classes.There was a strong correlation between expression of H-Y and occurrence of the heterogametic-type gonad, although unusual patterns of H-Y expression were noted in cases of temperature-influenced sex determination and in systems representing possible transition from one mode of heterogamety to the other. Male and female heterogamety are found side-by-side in certain freshwater toothed carps; and distinct sex chromosomes have been recognized in certain amphibians, even though they are not apparent in certain reptiles and primitíve birds. In seven ophidian species, in which the female is the heterogametic sex, H-Y was detected in the female; and in three species of Ranidae in which the male is heterogametic, it was detected in the male. In three species of cartilaginous fish and in one of the cyclostomes, in which heterogamety has not been ascertained, H-Y was detected in the male, suggesting that those primitive fishes are male-heterogametic. Evidently, then, heterogamety and sex-chromosome heteromorphism are polyphyletic, although certain sex-determining genes may be held in common among the diverse taxonomic groups.


Sign in / Sign up

Export Citation Format

Share Document