scholarly journals Substrate discrimination and quality control require each catalytic activity of TRAMP and the nuclear RNA exosome

2021 ◽  
Vol 118 (14) ◽  
pp. e2024846118
Author(s):  
Mom Das ◽  
Dimitrios Zattas ◽  
John C. Zinder ◽  
Elizabeth V. Wasmuth ◽  
Julien Henri ◽  
...  

Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3′ to 5′ degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.

2014 ◽  
Vol 42 (16) ◽  
pp. 10698-10710 ◽  
Author(s):  
Eileen Leung ◽  
Claudia Schneider ◽  
Fu Yan ◽  
Hatem Mohi-El-Din ◽  
Grzegorz Kudla ◽  
...  

Bionatura ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 1423-1426
Author(s):  
Bruna Rech ◽  
Fernando A. Gonzales-Zubiate

Ribonucleases (RNases) functions in the cell include precise maturation of non- coding RNAs and degradation of specific RNA transcripts that are no longer necessary. RNAses are present in the cell as single units or assembled as multimeric complexes; one of these complexes is the RNA exosome, a highly conserved complex essential for RNA processing and degradation. In the yeast Saccharomyces cerevisiae, the RNA exosome comprises eleven subunits, two with catalytic activity: Rrp6 and Rrp44, where the Rrp6 subunit is exclusively nuclear. Despite the RNA exosome has been intensively investigated since its discovery in 1997, only a few studies were accomplished concerning its nuclear transport. This review describes recent research about cellular localization and transport of this essential complex.


2010 ◽  
Vol 38 (1) ◽  
pp. 229-231 ◽  
Author(s):  
Andrew J. Hamilton

Mammalian erythrocytes are generally thought to lack RNA and therefore to be unable to translate new proteins in response to internal or external signals. Support for this long-standing view has accumulated from diverse studies, most of which have focused on the total content of RNA or the overall level of translation. However, more recent work on specific types of RNA has shown the presence in human erythrocytes of both Y RNA and microRNA. The latter seem particularly incongruous given that their normal role is to attenuate the translation of mRNA. Y RNA binds the Ro autoantigen which may have a role in cellular RNA quality control. Therefore the presence of both of these non-coding RNAs indicates the possible existence of other cryptic RNAs in erythrocytes. It also suggests either the existence of low levels of translation or new uncharacterized processes involving microRNA in these cells.


2021 ◽  
Vol 81 (7) ◽  
pp. 1372-1383 ◽  
Author(s):  
Karole N. D’Orazio ◽  
Rachel Green

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Zhao ◽  
Xiang Ye ◽  
Myriam Shehata ◽  
William Dunker ◽  
Zhihang Xie ◽  
...  

2019 ◽  
Vol 60 (9) ◽  
pp. 1953-1960 ◽  
Author(s):  
Misato Ohtani ◽  
Andreas Wachter

Abstract Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental responses. In this review, we will briefly summarize our current knowledge of the recognition and degradation of NMD targets, followed by an account of NMD’s regulation and physiological functions. We will specifically discuss plant-specific aspects of RNA quality control and its functional contribution to the fitness and environmental responses of plants.


2016 ◽  
Vol 28 (2) ◽  
pp. 426-438 ◽  
Author(s):  
Emilie Elvira-Matelot ◽  
Florian Bardou ◽  
Federico Ariel ◽  
Vincent Jauvion ◽  
Nathalie Bouteiller ◽  
...  

2012 ◽  
Author(s):  
Lauren M. Stanoszek ◽  
Erin L. Crawford ◽  
Thomas Blomquist ◽  
Paige Willey ◽  
James C. Willey

Sign in / Sign up

Export Citation Format

Share Document