The genetic basis of the root economics spectrum in a perennial grass

2021 ◽  
Vol 118 (47) ◽  
pp. e2107541118
Author(s):  
Weile Chen ◽  
Yanqi Wu ◽  
Felix B. Fritschi ◽  
Thomas E. Juenger

Construction economics of plant roots exhibit predictable relationships with root growth, death, and nutrient uptake strategies. Plant taxa with inexpensively constructed roots tend to more precisely explore nutrient hotspots than do those with costly constructed roots but at the price of more frequent tissue turnover. This trade-off underlies an acquisitive to conservative continuum in resource investment, described as the “root economics spectrum (RES).” Yet the adaptive role and genetic basis of RES remain largely unclear. Different ecotypes of switchgrass (Panicum virgatum) display root features exemplifying the RES, with costly constructed roots in southern lowland and inexpensively constructed roots in northern upland ecotypes. We used an outbred genetic mapping population derived from lowland and upland switchgrass ecotypes to examine the genetic architecture of the RES. We found that absorptive roots (distal first and second orders) were often “deciduous” in winter. The percentage of overwintering absorptive roots was decreased by northern upland alleles compared with southern lowland alleles, suggesting a locally-adapted conservative strategy in warmer and acquisitive strategy in colder regions. Relative turnover of absorptive roots was genetically negatively correlated with their biomass investment per unit root length, suggesting that the key trade-off in framing RES is genetically facilitated. We also detected strong genetic correlations among root morphology, root productivity, and shoot size. Overall, our results reveal the genetic architecture of multiple traits that likely impacts the evolution of RES and plant aboveground–belowground organization. In practice, we provide genetic evidence that increasing switchgrass yield for bioenergy does not directly conflict with enhancing its root-derived carbon sequestration.

2021 ◽  
Author(s):  
Robert W Heckman ◽  
Jason E Bonnette ◽  
Brandon E Campitelli ◽  
Philip A Fay ◽  
Thomas E Juenger

The leaf economics spectrum (LES) is hypothesized to result from a trade-off between resource acquisition and conservation. Yet few studies have examined the evolutionary mechanisms behind the LES, perhaps because most species exhibit relatively specialized leaf economics strategies. In a genetic mapping population of the phenotypically diverse grass Panicum virgatum, we evaluate two interacting mechanisms that may drive LES evolution: 1) genetic architecture, where multiple traits are coded by the same gene (pleiotropy) or by genes in close physical proximity (linkage), and 2) correlational selection, where selection acts non-additively on combinations of multiple traits. We found evidence suggesting that shared genetic architecture (pleiotropy) controls covariation between two pairs of leaf economics traits. Additionally, at five common gardens spanning 17 degrees of latitude, correlational selection favored particular combinations of leaf economics traits. Together, these results demonstrate how the LES can evolve within species.


2020 ◽  
Author(s):  
Isidore Diouf ◽  
Laurent Derivot ◽  
Shai Koussevitzky ◽  
Yolande Carretero ◽  
Frédérique Bitton ◽  
...  

AbstractDeciphering the genetic basis of phenotypic plasticity and genotype x environment interaction (GxE) is of primary importance for plant breeding in the context of global climate change. Tomato is a widely cultivated crop that can grow in different geographical habitats and which evinces a great capacity of expressing phenotypic plasticity. We used a multi-parental advanced generation intercross (MAGIC) tomato population to explore GxE and plasticity for multiple traits measured in a multi-environment trial (MET) design comprising optimal cultural conditions and water deficit, salinity and heat stress over 12 environments. Substantial GxE was observed for all the traits measured. Different plasticity parameters were estimated through the Finlay-Wilkinson and factorial regression models and used together with the genotypic means for quantitative trait loci (QTL) mapping analyses. Mixed linear models were further used to investigate the presence of interactive QTLs (QEI). The results highlighted a complex genetic architecture of tomato plasticity and GxE. Candidate genes that might be involved in the occurrence of GxE were proposed, paving the way for functional characterization of stress response genes in tomato and breeding for climate-adapted crop.HighlightThe genetic architecture of tomato response to several abiotic stresses is deciphered. QTL for plasticity and QTL x Environment were identified in a highly recombinant MAGIC population.


2021 ◽  
Author(s):  
Wanchang Zhang ◽  
Hongru Wang ◽  
Debora Yoshihara Caldeira Brandt ◽  
Beijuan Hu ◽  
Junqing Sheng ◽  
...  

The Betta fish displays a remarkable variety of phenotypes selected during domestication. However, the genetic basis underlying these traits remain largely unexplored. Here, we report a high-quality genome assembly and re-sequencing of 727 individuals representing diverse morphologies of the betta fish. We show that current breeds have a complex domestication history with extensive introgression with wild species. Using GWAS, we identify the genetic basis of multiple traits, including several coloration phenotypes, sex-determination which we map to DMRT1, and the long-fin phenotype which maps to KCNJ15. We identify a polygenic signal related to aggression with many similarities to human psychiatric traits, involving genes such as CACNB2 and DISC1. Our study provides a resource for developing the Betta fish as a genetic model for morphology and behavior in vertebrates.


2018 ◽  
Author(s):  
Bowen Hu ◽  
Ning Shen ◽  
James J. Li ◽  
Hyunseung Kang ◽  
Jinkuk Hong ◽  
...  

AbstractFacial attractiveness is a complex human trait of great interest in both academia and industry. Literature on sociological and phenotypic factors associated with facial attractiveness is rich, but its genetic basis is poorly understood. In this paper, we conducted a genome-wide association study to discover genetic variants associated with facial attractiveness using 3,928 samples in the Wisconsin Longitudinal Study. We identified two genome-wide significant loci and highlighted a handful of candidate genes, many of which are specifically expressed in human tissues involved in reproduction and hormone synthesis. Additionally, facial attractiveness showed strong and negative genetic correlations with BMI in females and with blood lipids in males. Our analysis also suggested sex-specific selection pressure on variants associated with lower male attractiveness. These results revealed sex-specific genetic architecture of facial attractiveness and provided fundamental new insights into its genetic basis.


2021 ◽  
Author(s):  
Tongbing Su ◽  
Weihong Wang ◽  
Peirong Li ◽  
Xiaoyun Xin ◽  
Yangjun Yu ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1845
Author(s):  
Santosh Nayak ◽  
Hem Bhandari ◽  
Carl Sams ◽  
Virginia Sykes ◽  
Haileab Hilafu ◽  
...  

Switchgrass (Panicum virgatum L.) is a warm-season, perennial grass valued as a promising candidate species for bioenergy feedstock production. Biomass yield is the most important trait for any bioenergy feedstock. This study was focused on understanding the genetics underlying biomass yield and feedstock quality traits in a “Kanlow” population. The objectives of this study were to (i) assess genetic variation (ii) estimate the narrow sense heritability, and (iii) predict genetic gain per cycle of selection for biomass yield and the components of lignocelluloses. Fifty-four Kanlow half-sib (KHS) families along with Kanlow check were planted in a randomized complete block design with three replications at two locations in Tennessee: Knoxville and Crossville. The data were recorded for two consecutive years: 2013 and 2014. The result showed a significant genetic variation for biomass yield (p < 0.05), hemicellulose concentration (p < 0.05), and lignin concentration (p < 0.01). The narrow sense heritability estimates for biomass yield was very low (0.10), indicating a possible challenge to improve this trait. A genetic gain of 16.5% is predicted for biomass yield in each cycle of selection by recombining parental clones of 10% of superior progenies.


2002 ◽  
Vol 12 (12) ◽  
pp. R415-R416 ◽  
Author(s):  
Julian K Christians ◽  
Peter D Keightley

2021 ◽  
Author(s):  
◽  
Noémie Valenza-Troubat

<p><b>Understanding the relationship between DNA sequence variation and the diversity of observable traits across the tree of life is a central research theme in biology. In all organisms, most traits vary continuously between individuals. Explaining the genetic basis of this quantitative variation requires disentangling genetic from non-genetic factors, as well as their interactions. The identification of causal genetic variants yields fundamental insights into how evolution creates diversity across the tree of life. Ultimately, this information can be used for medical, environmental and agricultural applications. Aquaculture is an industry that is experiencing significant global growth and is benefiting from the advances of genomic research. Genomic information helps to improve complex commercial phenotypes such as growth traits, which are easily quantified visually, but influenced by polygenes and multiple environmental factors, such as temperature. In the context of a global food crisis and environmental change, there is an urgent need not only to understand which genetic variants are potential candidates for selection gains, but also how the architecture of these traits are composed (e.g. monogenes, polygenes) and how they are influenced by and interact with the environment. The overall goal of this thesis research was to generate a genome-wide multi-omics dataset matched with exhaustive phenotypic information derived from a F0-F1 pedigree to investigate the quantitative genetic basis of growth in the New Zealand silver trevally (Pseudocaranx georgianus). These data were used to identify genomic regions that co-segregate with growth traits, and to describe the regulation of the genes involved in response to temperature fluctuations. The findings of this research helped gain fundamental insights into the genotype–phenotype map in an important teleost species and understand its ability to dynamically respond to temperature variations. This will ultimately support the establishment of a genomics-informed New Zealand aquaculture breeding programme. </b></p> <p>Chapter 1 of this thesis provides an overview of how genes interact with the environment to produce various growth phenotypes and how an understanding of this is important in aquaculture. This first chapter provides the deeper context for the research in subsequent data chapters. </p> <p>Chapter 2 describes the study population, the collection of phenotypic and genotypic data, and a first description of the genetic parameters of growth traits in trevally. A combination of Whole Genome Sequencing (WGS) and Genotyping-By-Sequencing (GBS) techniques were used to generate 60 thousand Single Nucleotide Polymorphism (SNP) markers for individuals in a two-generation pedigree. Together with phenotypic data, the genotyping data were used to reconstruct the pedigree, measure inbreeding levels, and estimate heritability for 10 growth traits. Parents were identified for 63% of the offspring and successful pedigree reconstruction indicated highly uneven contributions of each parent, and between the sexes, to the subsequent generation. The average inbreeding levels did not change between generations, but were significantly different between families. Growth patterns were found to be similar to that of other carangids and subject to seasonal variations. Heritability as well as genetic and phenotypic correlations were estimated using both a pedigree and a genomic relatedness matrix. All growth trait heritability estimates and correlations were found to be consistently high and positively correlated to each other. </p> <p>In Chapter 3, genotypic and phenotypic data were used to carry out linkage mapping and a genome-wide association study (GWAS) to map quantitative trait loci (QTLs) associated with growth differences in the F1 population. A linkage map was generated using the largest family, which allowed to scan for rare variants associated with the traits. The linkage map reported in this thesis is the first one for the Pseudocaranx genus and one of the densest for the carangid family. It included 19,861 SNPs contained in 24 linkage groups, which correspond to the 24 trevally chromosomes. Eight significant QTLs associated with height, length and weight were discovered on three linkage groups. Using GWAS, 113 SNPs associated with nine traits were identified and 29 genetic growth hot spots were uncovered. Two of the GWAS markers co-located with the QTLs discovered with the linkage mapping analysis. This demonstrates that combining QTL mapping and GWAS represents a powerful approach for the identification and validation of loci controlling complex phenotypes, such as growth, and provides important insights into the genetic architecture of these traits. </p> <p>Chapter 4, the last data chapter, investigates plasticity in gene expression patterns and growth of juvenile trevally, in response to different temperatures. Temperature conditions were experimentally manipulated for 1 month to mimic seasonal extremes. Phenotypic differences in growth were measured in 400 individuals, and the gene expression patterns of the pituitary gland and the liver were compared across treatments in a subset of 100 individuals, using RNA sequencing. Results showed that growth increased 50% more in the warmer compared with the colder condition, suggesting that temperature has a large impact on the metabolic activity associated with growth. We were able to annotate 27,887 gene models and found 39 differentially expressed genes (DEGs) in the pituitary, and 238 in the liver. Of these, 6 DEGs showed a common expression pattern between the tissues. Annotated blast matches of all DEGs revealed genes linked to major pathways affecting metabolism and reproduction. Our results indicate that native New Zealand trevally exhibit predictable plastic regulatory responses to temperature stress and the genes identified provide excellent for selective breeding objectives and studied how populations may adapt to increasing temperatures.</p> <p>Finally, Chapter 5 discusses the implications, future directions, and application of this research for trevally and other breeding programmes. It more broadly highlights the insights that were gained on the genetic architecture of growth, and the role of temperature in interacting and modulating genes involved in plastic growth responses.</p>


2016 ◽  
Author(s):  
Héloïse Bastide ◽  
Jeremy D. Lange ◽  
Justin B. Lack ◽  
Yassin Amir ◽  
John E. Pool

AbstractUnraveling the genetic architecture of adaptive phenotypic divergence is a fundamental quest in evolutionary biology. In Drosophila melanogaster, high-altitude melanism has evolved in separate mountain ranges in sub-Saharan Africa, potentially as an adaptation to UV intensity. We investigated the genetic basis of this melanism in three populations using a new bulk segregant analysis mapping method. Although hundreds of genes are known to affect cuticular pigmentation in D. melanogaster, we identified only 19 distinct QTLs from 9 mapping crosses, with several QTL peaks being shared among two or all populations. Surprisingly, we did not find wide signals of genetic differentiation (Fst) between lightly and darkly pigmented populations at these QTLs, in spite of the pronounced phenotypic difference in pigmentation. Instead, we found small numbers of highly differentiated SNPs at the probable causative genes. A simulation analysis showed that these patterns of polymorphism are consistent with selection on standing genetic variation (leading to “soft sweeps“). Our results thus support a role for oligogenic selection on standing genetic variation in driving parallel ecological adaptation.


Sign in / Sign up

Export Citation Format

Share Document