scholarly journals Wnt signaling recruits KIF2A to the spindle to ensure chromosome congression and alignment during mitosis

2021 ◽  
Vol 118 (34) ◽  
pp. e2108145118
Author(s):  
Anja Bufe ◽  
Ana García del Arco ◽  
Magdalena Hennecke ◽  
Anchel de Jaime-Soguero ◽  
Matthias Ostermaier ◽  
...  

Canonical Wnt signaling plays critical roles in development and tissue renewal by regulating β-catenin target genes. Recent evidence showed that β-catenin–independent Wnt signaling is also required for faithful execution of mitosis. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during cell division. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, inhibition of basal Wnt signaling leads to chromosome misalignment in somatic cells and pluripotent stem cells. We propose that Wnt signaling monitors KIF2A activity at the spindle poles during mitosis to ensure timely chromosome alignment. Our findings highlight a function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.

2020 ◽  
Author(s):  
Anja Bufe ◽  
Ana García del Arco ◽  
Magdalena-Isabell Hennecke ◽  
Matthias Ostermaier ◽  
Anchel de Jaime-Soguero ◽  
...  

AbstractCanonical Wnt signaling plays critical roles in development and tissue renewal by regulating β-catenin target genes. Recent evidence showed that β-catenin-independent Wnt signaling is also required for faithful execution of mitosis. This mitotic Wnt signaling functions through Wnt-dependent stabilization of proteins (Wnt/STOP), as well as through components of the LRP6 signalosome. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during mitosis. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, Wnt signaling promotes chromosome congression and alignment by monitoring KIF2A protein levels at the spindle poles both in somatic cells and in pluripotent stem cells. Our findings highlight a novel function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.SIGNIFICANCEWnt signaling plays essential roles in embryonic patterning, stem cell renewal, and cell cycle progression from G1 to S phase via the regulation of β-catenin target genes. Here, we show that Wnt signaling also promotes faithful execution of mitosis by ensuring chromosome congression and alignment before cell division, including in pluripotent stem cells. We demonstrate that the Wnt signaling transducer Dishevelled recruits the mitotic kinesin KIF2A, and mediates its binding to the spindle. KIF2A is a microtubule depolymerase that controls chromosome alignment and congression during mitosis. Consequently, we found that inhibition of Wnt signaling leads to KIF2A-dependent chromosome congression and alignment defects.


Development ◽  
2002 ◽  
Vol 129 (13) ◽  
pp. 3195-3206 ◽  
Author(s):  
Michael Lenhard ◽  
Gerd Jürgens ◽  
Thomas Laux

Continuous organ formation from the shoot apical meristem requires the integration of two functions: a set of undifferentiated, pluripotent stem cells is maintained at the very tip of the meristem, while their daughter cells in the periphery initiate organ primordia. The homeobox genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM) encode two major regulators of meristem formation and maintenance in Arabidopsis, yet their interaction in meristem regulation is presently unclear. Here, we have addressed this question using loss- and gain-of-function approaches. We show that stem cell specification by WUS does not require STM activity. Conversely, STM suppresses differentiation independently of WUS and is required and sufficient to promote cell division. Consistent with their independent and distinct phenotypic effects, ectopic WUS and STM activities induce the expression of different downstream target genes. Finally, the pathways regulated by WUS and STM appear to converge in the suppression of differentiation, since coexpression of both genes produced a synergistic effect, and increased WUS activity could partly compensate for loss of STM function. These results suggest that WUS and STM share labour in the shoot apical meristem: WUS specifies a subset of cells in the centre as stem cells, while STM is required to suppress differentiation throughout the meristem dome, thus allowing stem cell daughters to be amplified before they are incorporated into organs.


2020 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Shahrokh Lorzadeh ◽  
Negar Azarpira ◽  
Saeid Ghavami ◽  
Leila Kohan

Background: Induced pluripotent stem cells (iPSCs) have the ability to proliferate indefinitely and differentiate into three germ layers of ectoderm, mesoderm, and endoderm. Definitive induction is the first and the most delicate stage of differentiation of various iPSC-derived organs. It has been found that the Wnt signaling pathway implicates in embryogenesis, organogenesis, and cell communication. Objectives: In the present study, we aimed to investigate the expression pattern of the Wnt5a gene as an indicator of non-canonical Wnt signaling activity during definitive endoderm induction of iPSCs. Methods: Human iPSCs (RSCB0042) were acquired from Royan stem cell bank of Royan Institute (Tehran, Iran). The iPSCs were cultured on a feeder layer of mitomycin-inactivated mouse embryonic fibroblasts (MEF), and iPSC colonies were collected for embryoid body (EB) generation by suspension culture method. Then endoderm induction step was performed using a series of small molecules. The quantitative real-time PCR was used to assess the mRNA expression of wnt5a, Nanog, OCT4, SOX17, and FOXA2 genes. Results: The production of efficient EBs confirmed by a decrease in Nanog and Oct4 gene expression and the success of DE (definite endoderm) induction step was confirmed by a high expression level of DE specific genes, Sox17, and FoxA2. A significant upregulation of Wnt5a in EB samples and a minor decrease at day 4 was observed. However, the differentiation process followed by an incremental fashion in Wnt5a mRNA expression starting from day 4 of differentiation among the samples of days 6 and 8 (DE stage). Conclusions: Our results suggest that Wnt5a is more activated at the later steps of endoderm induction rather than the early steps, which may be due to the stimulation of canonical Wnt signaling. Finding the expression level of Wnt5a could rise insights for developing more efficient differentiation induction protocols.


Sign in / Sign up

Export Citation Format

Share Document