Warming winters in lakes: Later ice onset promotes consumer overwintering and shapes springtime planktonic food webs

2021 ◽  
Vol 118 (48) ◽  
pp. e2114840118
Author(s):  
Marie-Pier Hébert ◽  
Beatrix E. Beisner ◽  
Milla Rautio ◽  
Gregor F. Fussmann

Global climate warming is causing the loss of freshwater ice around the Northern Hemisphere. Although the timing and duration of ice covers are known to regulate ecological processes in seasonally ice-covered ecosystems, the consequences of shortening winters for freshwater biota are poorly understood owing to the scarcity of under-ice research. Here, we present one of the first in-lake experiments to postpone ice-cover onset (by ≤21 d), thereby extending light availability (by ≤40 d) in early winter, and explicitly demonstrate cascading effects on pelagic food web processes and phenologies. Delaying ice-on elicited a sequence of events from winter to spring: 1) relatively greater densities of algal resources and primary consumers in early winter; 2) an enhanced prevalence of winter-active (overwintering) consumers throughout the ice-covered period, associated with augmented storage of high-quality fats likely due to a longer access to algal resources in early winter; and 3) an altered trophic structure after ice-off, with greater initial springtime densities of overwintering consumers driving stronger, earlier top-down regulation, effectively reducing the spring algal bloom. Increasingly later ice onset may thus promote consumer overwintering, which can confer a competitive advantage on taxa capable of surviving winters upon ice-off; a process that may diminish spring food availability for other consumers, potentially disrupting trophic linkages and energy flow pathways over the subsequent open-water season. In considering a future with warmer winters, these results provide empirical evidence that may help anticipate phenological responses to freshwater ice loss and, more broadly, constitute a case of climate-induced cross-seasonal cascade on realized food web processes.

Author(s):  
Tomasz Mieczan ◽  
Małgorzata Adamczuk ◽  
Monika Tarkowska-Kukuryk ◽  
Dorota Nawrot

<p>Complex interactions between zooplankton and microbial food webs are vital to the ecosystem ecology of shallow lakes. However, little is known about how horizontal changes in environmental conditions may influence microbial and metazoan communities in shallow lakes. The specific goals of the study were i) to describe environmental variables responsible for the distribution of bacteria, flagellates, ciliates and crustaceans in an adjacent canal, ecotone and reservoir (littoral-pelagic zone) in two different types of lakes (<em>Ceratophyllum</em>-dominated and <em>Potamogeton</em>-dominated lakes); ii) to determine whether the contact zone waters differ in hydrochemical and biological terms from the waters of the canal and the open water zone; iii) and to evaluate the influence of particular macro-habitats (canal, canal/reservoir, littoral and pelagic zone) on the interactions between components of the planktonic food web. We studied four shallow, eutrophic lakes in Polesie Lubelskie (eastern Poland). The highest diversity and abundance of microorganisms and crustaceans were observed in the canal-reservoir contact zone, while the lowest values were noted in the pelagic zone. Hence, the contact zone in the investigated lakes could fulfil the function of an ecotone, distinguished by a significant increase in biodiversity, abundance, and species specificity of micro- and macroorganisms. Weak relations between food web components were found in the <em>Ceratophyllum</em>-dominated lakes, where environmental variables explained the bulk of the total variance in plankton abundance, whereas in the <em>Potamogeton</em>-dominated lakes, where environmental variables had a minor role in the total variance in plankton abundance, strong predator-prey relations were noted. Spatial structure of habitats proved to be another important factor for relationships between food web components, as our study indicated that habitat complexity can reduce negative correlations between food web components. Our study contributes to knowledge of the functioning of eutrophic lakes in the current era of increasing eutrophication caused by climate change and human activity.</p>


2012 ◽  
Vol 460 ◽  
pp. 49-61 ◽  
Author(s):  
J Dinasquet ◽  
J Titelman ◽  
LF Møller ◽  
O Setälä ◽  
L Granhag ◽  
...  

2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


2004 ◽  
Vol 49 (4part2) ◽  
pp. 1435-1445 ◽  
Author(s):  
Robert Ptacnik ◽  
Ulrich Sommer ◽  
Thomas Hansen ◽  
Volker Martens
Keyword(s):  
Food Web ◽  

2014 ◽  
Vol 77 (1) ◽  
pp. 115-128 ◽  
Author(s):  
Hélène Masclaux ◽  
Sébastien Tortajada ◽  
Olivier Philippine ◽  
François-Xavier Robin ◽  
Christine Dupuy

2016 ◽  
Author(s):  
Sophie Bonnet ◽  
Melika Baklouti ◽  
Audrey Gimenez ◽  
Hugo Berthelot ◽  
Ilana Berman-Frank

Abstract. In marine ecosystems, N2 fixation provides the predominant external source of nitrogen (N) (140 ± 50 Tg N yr−1), contributing more than atmospheric and riverine inputs to the N supply. Yet the fate and magnitude of the newly-fixed N, or diazotroph-derived N (hereafter named DDN) in marine ecosystems is poorly understood. Moreover, it remains unclear whether the DDN is preferentially directly exported out of the photic zone, recycled by the microbial loop, and/or transferred into larger organisms, subsequently enhancing indirect particle export. These questions were investigated in the framework of the VAHINE (VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific) project. Triplicate large volume (~50 m3) mesocosms were deployed in the tropical South West Pacific coastal ocean (New Caledonia) to maintain a stable water-mass without disturbing ambient light and temperature conditions. The mesocosms were intentionally fertilized with ~0.8 μM dissolved inorganic phosphorus (DIP) at the start of the experiment to stimulate diazotrophy. A total of 47 stocks, fluxes, enzymatic activities and diversity parameters were measured daily inside and outside the mesocosms by the 40 scientists involved in the project. The experiment lasted for 23 days and was characterized by two distinct and successive diazotroph blooms: a dominance of diatom-diazotroph associations (DDAs) during the first half of the experiment (days 2–14) followed by a bloom of UCYN-C during the second half of the experiment (days 15–23). These conditions provided a unique opportunity to compare the DDN transfer and export efficiency associated with different diazotrophs. Here we summarize the major experimental and modelling results obtained during the project and described in the VAHINE Special issue, in particular those regarding the evolution of the main standing stocks, fluxes and biological characteristics over the 23-days experiment, the contribution of N2 fixation to export fluxes, the DDN released to dissolved pool and its transfer to the planktonic food web (bacteria, phytoplankton, zooplankton). We then apply our Eco3M modelling platform further to infer the fate of DDN in the ecosystem and role of N2 fixation on productivity, food web structure and carbon export. Recommendations for future work are finally provided in the conclusion section.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 ◽  
Author(s):  
Blanche Saint-Béat ◽  
Brian D. Fath ◽  
Cyril Aubry ◽  
Jonathan Colombet ◽  
Julie Dinasquet ◽  
...  

Baffin Bay, located at the Arctic Ocean’s ‘doorstep’, is a heterogeneous environment where a warm and salty eastern current flows northwards in the opposite direction of a cold and relatively fresh Arctic current flowing along the west coast of the bay. This circulation affects the physical and biogeochemical environment on both sides of the bay. The phytoplanktonic species composition is driven by its environment and, in turn, shapes carbon transfer through the planktonic food web. This study aims at determining the effects of such contrasting environments on ecosystem structure and functioning and the consequences for the carbon cycle. Ecological indices calculated from food web flow values provide ecosystem properties that are not accessible by direct in situ measurement. From new biological data gathered during the Green Edge project, we built a planktonic food web model for each side of Baffin Bay, considering several biological processes involved in the carbon cycle, notably in the gravitational, lipid, and microbial carbon pumps. Missing flow values were estimated by linear inverse modeling. Calculated ecological network analysis indices revealed significant differences in the functioning of each ecosystem. The eastern Baffin Bay food web presents a more specialized food web that constrains carbon through specific and efficient pathways, leading to segregation of the microbial loop from the classical grazing chain. In contrast, the western food web showed redundant and shorter pathways that caused a higher carbon export, especially via lipid and microbial pumps, and thus promoted carbon sequestration. Moreover, indirect effects resulting from bottom-up and top-down control impacted pairwise relations between species differently and led to the dominance of mutualism in the eastern food web. These differences in pairwise relations affect the dynamics and evolution of each food web and thus might lead to contrasting responses to ongoing climate change.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Joanna Raye Ennis

Human-induced landscape alteration by agriculture is ubiquitous and impacts ecological processes and ecosystem services. The link between altered and native vegetation (hereafter edges) can create anthropogenic barriers for wildlife movement. Movement response to edges is dependent on landscape and functional group characteristics that shape spatial behavior in individuals; and affect population dynamics, dispersal, diversity, gene flow, and nutrient distribution. Few studies exist on small-mammal functional group movement response to edges, despite its integral role in behavioral and ecological processes. I analyzed the effect of altered land use on movement response in African savannah generalist Mastomys natalensis and specialist Lemniscomys rosalia. Each species was live-trapped for 2 months at 8 sites, across 2 boundary classes—homestead agriculture vs. savannah and commercial agricultural vs. savannah. Twelve individuals of each species were tracked and translocated at each transect with alternating treatments. Movement characteristics by M. natalensis showed a preference for altered land-use areas, possibly due to resource utilization. Conversely, L. rosalia showed a definitive trend (80%) to avoid edge crossing, regardless of abutting vegetative community, possibly due to their inability to cross and utilize altered landscapes. These results support the a priori hypothesis that altered land-use areas greatly impact specialists moving across the edge but only minimally affect generalist movements. Altered landscapes can affect small mammal movements and have cascading effects that alter vegetative and faunal communities.


2017 ◽  
Vol 63 (3) ◽  
pp. 1093-1108 ◽  
Author(s):  
Gayantonia Franzè ◽  
James J. Pierson ◽  
Diane K. Stoecker ◽  
Peter J. Lavrentyev

Sign in / Sign up

Export Citation Format

Share Document