scholarly journals Stimulation of prostaglandin E synthesis in cultured human umbilical vein smooth muscle cells

1976 ◽  
Vol 73 (5) ◽  
pp. 1617-1620 ◽  
Author(s):  
R W Alexander ◽  
M A Gimbrone
1998 ◽  
Vol 275 (4) ◽  
pp. C1031-C1039 ◽  
Author(s):  
Ilia Voskoboinik ◽  
Karin Söderholm ◽  
Ian A. Cotgreave

Human umbilical vein smooth muscle cells (HUVSMCs) utilize extracellular cystine, glutathione (GSH), and N-acetylcysteine (NAC) to synthesize cellular GSH. Extracellular cystine was effective from 5 μM, whereas GSH and NAC were required at 100 μM for comparable effects. The efficacy of extracellular GSH was dependent on de novo GSH synthesis, indicating a dependence on cellular γ-glutamyltransferase (glutamyl transpeptidase). Coculture of syngenetic HUVSMCs and corresponding human umbilical vein endothelial cells (HUVECs) on porous supports restricted cystine- or GSH-stimulated synthesis of HUVSMC GSH when supplied on the “luminal” endothelial side. Thus HUVSMC GSH rapidly attained a steady-state level below that achieved in the absence of interposed HUVECs. HUVSMCs also readily utilize both reduced ascorbate (AA) and oxidized dehydroascorbate (DHAA) over the range 50–500 μM. Phloretin effectively blocked both AA- and DHAA-stimulated assimilation of intracellular AA, indicating a role for a glucose transporter in their transport. Uptake of extracellular AA was also sensitive to extracellular, but not intracellular, thiol depletion. When AA was applied to the endothelial side of the coculture model, assimilation of intracellular AA in HUVSMCs was restricted to a steady-state level below that achieved by free access.


1998 ◽  
Vol 60 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Roland Walter ◽  
Philippe Linscheid ◽  
Nenad Blau ◽  
Lucja Kierat ◽  
Andreas Schaffner ◽  
...  

1996 ◽  
Vol 76 (04) ◽  
pp. 603-609 ◽  
Author(s):  
Rose-Marie Catalioto ◽  
Paola Cucchi ◽  
Anna Rita Renzetti ◽  
Marco Criscuoli ◽  
Alessandro Subissi

SummaryThe aim of the present work was to study how human umbilical vein smooth muscle cells (HUVSMC) can initiate the coagulation process and to investigate the responses of these cells to thrombin. Exposure of HUVSMC to recalcified human plasma led to a time-dependent production of thrombin, measured both as amidolytic activity and as release of fibrinopeptide A. Thrombin activity was dose-dependently reduced by an anti-human tissue factor antibody (76 ± 3% at 10 Μg/ml) and by inhibitors like heparin, rec-hirudin, hirulog-1, Napap and hiru-norm, a novel hirudin-like thrombin inhibitor (IC50 = 2 ± 0.4, 8 ± 1, 130 ± 22, 199 ± 29 and 68 ± 8nM, respectively). The release of fibrinopeptide A was similarly prevented (IC50 = 14 ± 1,132 ± 25 and 50 ± 8 nM for rec-hirudin, Napap and hirunorm, respectively). Exogenously added thrombin increased thymidine incorporation into HUVSMC to 240 ± 30% of basal (EC50 = 0.49 ± 0.09 nM) and thrombin inhibitors blocked this effect (IC50 = 10 ± 3, 37 ± 17, 343 ± 165 and 1402 ± 758 nM for rec-hirudin, hirunorm, Napap and hirulog-1, respectively). Also recalcified human plasma was mitogenic for HUVSMC and its effect was mainly due to endogenously generated thrombin, as shown by the use of thrombin inhibitors. In conclusion, HUVSMC are capable of initiating the extrinsic coagulation cascade, leading to the formation of thrombin which promotes clotting and stimulates DNA synthesis. Thrombin inhibitors prevent both coagula-tive and cellular effects of thrombin.


2005 ◽  
Vol 58 (2) ◽  
pp. 397-397
Author(s):  
E Mildenberger ◽  
B Biesel ◽  
G Siegel ◽  
H V Versmold

Sign in / Sign up

Export Citation Format

Share Document