scholarly journals Ly phenotype of T cells cytotoxic for syngeneic mouse mammary tumors: evidence for T cell interactions.

1977 ◽  
Vol 74 (12) ◽  
pp. 5667-5671 ◽  
Author(s):  
O. Stutman ◽  
F. W. Shen ◽  
E. A. Boyse
1993 ◽  
Vol 23 (9) ◽  
pp. 2175-2180 ◽  
Author(s):  
Tony Wyss-Coray ◽  
Daniela Mauri-Hellweg ◽  
Kaspar Baumann ◽  
Florence Bettens ◽  
Roland Grunow ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A348-A348
Author(s):  
Jessie Wang ◽  
Kaixia Lian ◽  
Jia Zheng ◽  
Chenpan Nie ◽  
Annie An ◽  
...  

BackgroundThe development of immuno-oncology (I/O) therapeutics has revolutionized the cancer treatment landscape. Despite this achievement, the mechanism behind limited responses is poorly understood. Tumor immune evasion has been reported to arise through the loss of tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways, which are crucial to CD8+ T cell-mediated killing. Syngeneic mouse models have been widely used as they have an intact immune system, are easily accessible, and have a vast array of historical data for comparison. However, limited syngeneic models respond to immune checkpoint inhibitors, possibly due to low intrinsic immunogenicity. The expression of ovalbumin (OVA) has previously shown to sufficiently alter the susceptibility of syngeneic tumors to host T cell-mediated responses. In this study, the newly developed OVA-expressing MC38 syngeneic line was characterized for tumor immunity, checkpoint blockade response and response durability.MethodsMurine colon cancer MC38 cells were transduced by lentiviral vector with chicken OVA coding cDNA. A single clone was selected, and OVA expression was confirmed by western blot. The MC38-OVA cells were subcutaneously implanted into immunocompetent mice to evaluate the tumorigenicity and in vivo response to anti-PD-1 antibody treatment. Blood was collected 2 days post final dose of anti-PD-1 treatment for phenotypic analysis by FACS. Spleen and tumor draining lymph nodes were collected at termination for FACS analysis of IFN-γ+ T cells and OVA specific CD8+ T cells. Adoptive transfer was evaluated by challenge studies in both MC38-OVA and MC38 tumor-bearing mice with T cells derived from MC38-OVA mice, anti-PD-1 cured mice and OT-I mice. In vitro killing assays were performed to evaluate the function of adoptive CD3+ T cells transfer.ResultsOVA-expressing MC38 presented complete regression under anti-PD-1 treatment in vivo. T cell expansion was observed after anti-PD-1 treatment in peripheral blood with increased IFN-γ+ T cells in both tumor-draining lymph nodes and spleen. Additionally, anti-PD-1 cured mice generated robust tumor specific memory T cell, which successfully inhibited MC38-OVA and MC38 tumor growth following adoptive transfer. CD3+ T cells from MC38-OVA-bearing mice and OT-I mice showed anti-tumor immunity in vivo. In vitro killing assay demonstrated increased immunity.ConclusionsSyngeneic mouse tumor models are preferred preclinical models for I/O research, despite limited intrinsic immunogenicity. OVA expression in syngeneic tumors largely increased T cell-mediated immunity to enhance antigen-specific T cell responses during tumorigenesis, providing novel immunogenic models for preclinical immunotherapy evaluation.


2015 ◽  
Vol 33 (12) ◽  
pp. 1287-1292 ◽  
Author(s):  
Judith Agudo ◽  
Albert Ruzo ◽  
Eun Sook Park ◽  
Robert Sweeney ◽  
Veronika Kana ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (1) ◽  
pp. 75-84 ◽  
Author(s):  
María Mittelbrunn ◽  
Gloria Martínez del Hoyo ◽  
María López-Bravo ◽  
Noa B. Martín-Cofreces ◽  
Alix Scholer ◽  
...  

Abstract Plasmacytoid dendritic cells (pDCs) efficiently produce type I interferon and participate in adaptive immune responses, although the molecular interactions between pDCs and antigen-specific T cells remain unknown. This study examines immune synapse (IS) formation between murine pDCs and CD4+ T cells. Mature pDCs formed canonical ISs, involving relocation to the contact site of the microtubule-organizing center, F-actin, protein kinase C-θ, and pVav, and activation of early signaling molecules in T cells. However, immature pDCs were less efficient at forming conjugates with T cells and inducing IS formation, microtubule-organizing center translocation, and T-cell signaling and activation. Time-lapse videomicroscopy and 2-photon in vivo imaging of pDC–T-cell interactions revealed that immature pDCs preferentially mediated transient interactions, whereas mature pDCs promoted more stable contacts. Our data indicate that, under steady-state conditions, pDCs preferentially establish transient contacts with naive T cells and show a very modest immunogenic capability, whereas on maturation, pDCs are able to form long-lived contacts with T cells and significantly enhance their capacity to activate these lymphocytes.


2008 ◽  
Vol 89 (3) ◽  
pp. 709-715 ◽  
Author(s):  
Wendy S. Sprague ◽  
Melissa Robbiani ◽  
Paul R. Avery ◽  
Kevin P. O'Halloran ◽  
Edward A. Hoover

Feline immunodeficiency virus (FIV) interacts with dendritic cells (DC) during initiation of infection, but whether DC support or transfer FIV infection remains unclear. To address this issue, we studied the susceptibility of feline myeloid DC to FIV infection and assessed potential transfer of infection from DC to CD4+ T cells. FIV was detected in membrane-bound vesicles of DC within 2 h of inoculation, although only low concentrations of FIV DNA were found in virus-exposed isolated DC. Addition of resting CD4+ T cells increased viral DNA levels; however, addition of activated CD4+ T cells resulted in a burst of viral replication manifested by FIV p27 capsid antigen generation. To determine whether transfer of FIV infection required productively infected DC (vs virus bound to DC but not internalized), virus-exposed DC were cultured for 2 days to allow for degradation of uninternalized virus and initiation of infection in the DC, then CD4+ T blasts were added. Infection of T cells remained robust, indicating that T-cell infection is likely to be mediated by de novo viral infection of DC followed by viral transfer during normal DC/T-cell interactions. We conclude that feline DC support restricted FIV infection, which nevertheless is sufficient to efficiently transfer infection to susceptible T cells and trigger the major burst of viral replication. Feline DC/FIV/T-cell interactions (similar to those believed to occur in human immunodeficiency virus and simian immunodeficiency virus infections) highlight the means by which immunodeficiency-inducing lentiviruses exploit normal DC/T-cell interactions to transfer and amplify virus infection.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 38-38
Author(s):  
Dhanya Kizhakayil ◽  
Abbirami Sathappan ◽  
Giusy Gentilcore ◽  
Zoltan Pos ◽  
Nikolett Lupsa ◽  
...  

Cytotoxic T cells (CTLs) and B cells engage distinct interactions in GVHD patients' blood and tissues, detectable in regular flow-cytometry screenings, by size and by double positive CD19-CD8 antibody markers (Deola, BMT 2017). B-CTL couplets are formed by alpha-betaTCR+ CD8+ CTLs preferentially targeting CD27+ CD19+ cells displaying an activated CD80 and CD86 phenotype. Interactions may last from 5 minutes to roughly 1 hour, and release a pattern of T cell attracting chemokines, as IP10, MIG, ITAC, which are also known GVHD biomarkers. To further unravel the mechanism of this cell interaction, we built an in-vitro model where human PBMCs cells are expanded with cognate peptides and IL2 for 1-2 weeks, then immune-selected for CD8 antigen by Miltenyi microbeads negative-selection and incubated (2-18 hours) with fresh autologous CD19-B cells, immune-selected with the same method. The interactions are studied under confocal microscope video-imaging (Zeiss LSM 880+Imaris 3D analysis software) and in flow-cytometry (SymphonyA5 BD) after deep phenotype antibody staining. The intensity of interaction, measured by fluorescence interference on cell membranes, revealed an active engagement of CD19 and CD8 antigens. CD19 antigen penetrates deeper in contacting T cells, than CD8 on B cells, and consistently with this finding, after the interactions there is an antigen exchange between cells with CD19 antigen actively transferred in CD8 cells (p value =<0.001), but not the contrary. We already proved that this type of B-T interaction is not antigen specific in CTL-to-B direction (Deola et a, JI 2008) but to exclude cross-presentation from B to CTLs and to unravel the role of CD8, we interfered by antibody blocking of MHC class I pathway on B cells and CD8 on CTLs. B-T cell interactions are not abolished after MHC-I or CD8 blocking, the intensity of coupling is unchanged after MHC-I block, and is higher after blocking CD8 (p value=<0.001). In particular, by blocking CD8 molecule, T cells target preferentially CD19+/CD27- cells rather than CD19+/27+ cells. Interestingly, B cell engagement follows 2 repetitive patterns of interaction: a high intensity interaction that visually corresponds to tight coupling cells with high CD19 penetration in T cells, and a low-intensity continuous interaction, visually measurable by cells "sniffing" each other. Both patterns correspond to diverse Calcium flux activation on T cells and B cells, suggesting functional different pathways triggered by the 2 type of interactions. Deep phenotype flow cytometry analyses after coupling reveals distinct programs triggered by the contact in both B cells and T cells. While after the interaction CTLs double their pool of perforin bearing effectors and their fraction of CD45RA-/CD27+ memory CTLs, CD19 preferentially undergo a deletion of IgD- CD27- (DN) cells (13,85%+/-1,1 and 22,95%+/-4,5 CD95/Fas+, respectively in B cells alone and B+CTLs, n=2) and a rescue of affinity mature CD27+ IgD- cells (39.8%+/-25,47 and 21,2%+/- 29% CD95/Fas+ in the same groups) CTLs are the ultimate line of "tissue attack" in GVHD and several diseases, as autoimmune diseases, cancer, viral diseases, sharing a common pathological program definable as "immune rejection". B cells are key players in immune rejection, but a link between these 2 types of cells is still unclear. Our findings enforce the hypothesis of a program of peripheral tolerance/activation triggered directly between B cells and activated CTLs in the context of inflammation and of GVHD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2740-2740
Author(s):  
Kerstin Wennhold ◽  
Nela Klein-Gonzalez ◽  
Michael von Bergwelt-Baildon ◽  
Alexander Shimabukuro-Vornhagen

Abstract In recent years, there has been a growing interest in the use of B cells for cellular immunotherapy, since B cell-based cancer vaccines have yielded promising results in preclinical animal models. Contrary to dendritic cells (DCs), we know little about the migration behavior of B cells in vivo. Therefore, we investigated the interactions between CD40-activated (CD40) B cells and cytotoxic T cells in vitro and the migration behavior of CD40B cells in vivo. The dynamic interactions of human antigen-presenting cells and antigen-specific T cells were observed by time-lapse videomicroscopy. The migratory and chemoattractant potential of CD40B cells was analyzed by flow cytometry and standard transwell migration assays. GFP+ CD40B cells or CD40B cells isolated from Luciferase+mice were used for subsequent in vivo studies. Murine CD40B cells show similar migratory and chemotactic characteristics compared to human CD40B cells. Upon CD40-activation, B cells upregulate the important molecules involved in lymh node homing (CD62L, CCR7/CDCR4), which are functional and induce chemotaxis of T cells in vitro. Striking differences were observed for interactions of human CD40B cells or DCs with T cells. Antigen-loaded CD40B cells differ from immature and mature DCs by displaying a rapid migratory pattern undergoing highly dynamic, short-lived (7.5 min) and sequential interactions with cognate T cells. In vivo, CD40B cells migrate to the spleen and the lymph nodes, where they enrich in the B cell zone before traveling to B cell/ T cell boundary close to the T cell zone. CD40B cell interactions with T cells are dynamic and short-lived and thereby differ from DCs. Taken together, the migration behavior of CD40B cells and their interaction with T cells underline their potential as cellular adjuvant for cancer immunotherapy. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 88 (5) ◽  
pp. 1041-1050 ◽  
Author(s):  
Katja Thümmler ◽  
Jan Leipe ◽  
Andreas Ramming ◽  
Hendrik Schulze-Koops ◽  
Alla Skapenko

Sign in / Sign up

Export Citation Format

Share Document